Do it today

Algebra Level 3

S = 1 1 × 2 1 2 × 3 1 3 × 4 1 59 × 60 \large S = {\frac{1}{1 \times 2} - \frac{1}{2 \times 3} - \frac{1}{3 \times 4} - \cdots - \frac{1}{59 \times 60}}

Find 1 S \dfrac 1S .

Bonus: Generalise it for any n n , where n n is the last ending number, that is as 60 in the sum above.


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 30, 2017

S n = 1 1 × 2 1 2 × 3 1 3 × 4 1 ( n 1 ) × n = 1 1 1 2 1 2 + 1 3 1 3 + 1 4 1 n 1 + 1 n = 1 1 1 2 1 2 + 1 3 1 3 + 1 4 1 4 1 n 1 1 n 1 + 1 n = 1 n \begin{aligned} S_n & = {\color{#3D99F6}\frac 1{1\times 2}} - {\color{#D61F06}\frac 1{2\times 3}} - {\color{#3D99F6}\frac 1{3\times 4}} - \cdots - \color{#3D99F6} \frac 1{(n-1)\times n} \\ & = {\color{#3D99F6}\frac 11 - \frac 12} - {\color{#D61F06}\frac 12 + \frac 13} - {\color{#3D99F6}\frac 13 + \frac 14} - \cdots - \color{#3D99F6}\frac 1{n-1} + \frac 1n \\ & = \cancel{\frac 11 - \frac 12 - \frac 12} + \cancel{\frac 13 - \frac 13} + \cancel{\frac 14 -\frac 14} \cdots \cancel{\frac 1{n-1}- \frac 1{n-1}} + \frac 1n \\ & = \frac 1n \end{aligned}

1 S n = n For n = 60 1 S 60 = 60 \begin{aligned}\implies \frac 1{S_n} & = n & \small \color{#3D99F6} \text{For }n = 60 \\ \frac 1{S_{60}} & = \boxed{60} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...