Do or try again 3

Calculus Level 2

x e x ( x + 1 ) 2 d x = ? \large \int \dfrac{xe^x}{(x+1)^2} dx = ?


Notation: C C denotes the constant of integration .

x e x x + 1 + C \frac{xe^x}{x+1} + C x e x + C xe^x+C e x x + 1 + C \frac{e^x}{x+1} + C e x ln ( x + 1 ) + C e^x \ln(x+1)+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = x e x ( x + 1 ) 2 d x By integration by parts = x e x x + 1 + e x + x e x x + 1 d x = x e x x + 1 + e x d x = x e x x + 1 + e x + C = e x x + 1 + C \begin{aligned} I & = \int \frac {xe^x}{(x+1)^2} dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = - \frac {xe^x}{x+1} + \int \frac {e^x + xe^x}{x+1} dx \\ & = - \frac {xe^x}{x+1} + \int e^x dx \\ & = - \frac {xe^x}{x+1} + e^x + C \\ & = \boxed{\dfrac {e^x}{x+1}+C}\end{aligned}

Akshat Sharda
Sep 3, 2017

e x x + 1 1 ( x + 1 ) 2 d x = e x ( 1 x + 1 + 1 ( x + 1 ) 2 ) d x \int e^x \frac{ x+ 1-1 }{(x+1)^2}dx=\int e^x \left( \frac{1}{x+1}+\frac{-1}{(x+1)^2} \right)dx

As d d x ( e x f ( x ) ) = e x ( f ( x ) + f ( x ) ) \frac{d}{dx} (e^x f(x)) = e^x (f(x)+f'(x)) , therefore,

e x ( 1 x + 1 + 1 ( x + 1 ) 2 ) d x = e x x + 1 + C \int e^x \left( \frac{1}{x+1}+\frac{-1}{(x+1)^2} \right)dx = \frac{e^x}{x+1} + C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...