2 1 6 cos ( 7 2 π ) + 8 cos ( 7 4 π ) + x = sin ( 7 2 π ) + sin ( 7 4 π ) + sin ( 7 6 π )
Solve the equation above for x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Essentially we want to find
[ 2 sin ( 7 2 π ) + 2 sin ( 7 4 π ) + 2 sin ( 7 6 π ) ] 2 − 1 6 cos ( 7 2 π ) − 8 cos ( 7 4 π )
Expand it:
4 sin 2 ( 7 2 π ) + 4 sin 2 ( 7 4 π ) + 4 sin 2 ( 7 6 π ) + 8 sin ( 7 2 π ) sin ( 7 4 π ) + 8 sin ( 7 2 π ) sin ( 7 6 π ) + 8 sin ( 7 4 π ) sin ( 7 6 π ) − 1 6 cos ( 7 2 π ) − 8 cos ( 7 4 π )
Apply the trigonometric identities: 2 sin 2 ( A ) = 1 − cos ( 2 A ) , cos ( P ) − cos ( Q ) = − 2 sin ( 2 P + Q ) sin ( 2 P − Q )
And for simplicities sake, let x = 7 π , the expression becomes
2 ( 1 − cos ( 4 x ) ) + 2 ( 1 − cos ( 8 x ) ) + 2 ( 1 − cos ( 1 2 x ) ) + 4 ( − cos ( 6 x ) + cos ( 2 x ) ) + 4 ( − cos ( 8 x ) + cos ( 4 x ) ) + 4 ( − cos ( 1 0 x ) + cos ( 2 x ) ) − 1 6 cos ( 2 x ) − 8 cos ( 4 x )
Simplifying it and applying the periodic properties of trigonometric functions: cos ( A ) = − cos ( π − A ) , cos ( π + A ) = − cos ( A ) gives
6 + 1 0 [ cos ( x ) − cos ( 2 x ) + cos ( 3 x ) ] = 6 + 1 0 [ cos ( x ) + cos ( 3 x ) + cos ( 5 x ) ]
The value of the expression inside the bracket is simply 2 1 which could be easily verified . Hence the answer is simply 6 + 1 0 ( 2 1 ) = 1 1
Perfect solution.
Log in to reply
Your solution is perfecter.
Log in to reply
Yes, but yours is more intuitive and natural.
R.H.S. = 2 S (4) C (2) + S (4) = S (4) [ 2 C (2) + 1]
16 C (2) + 8 C (4) + x = 4 S2 (4) [4 C2 (2) + 4 C (2) + 1]
16 C (2) + 8 C (4) + x = 4 S2 (4) 4 C2 (2) + 4 S2 (4) 4 C (2) + 4 S2 (4)
16 C (2) + 8 C (4) + x = 4 [1 - C (8)] [1 + C (4)] + 4 S2 (4) + 16 S2 (4) C (2)
16 C (2) + 8 C (4) + x = 4 + 4 C (4) - 4 C (8) - 4 C (8) C (4) + 4 S2 (4) + 16 [1 - C2 (4)] C (2)
x = 4 - 4 C (4) - 4 C (8) - 4 C (8) C (4) + 2 [1 - C (8)] - 8 [1 + C (8)] C (2)
x = 4 - 4 C (4) - 4 C (8) - 4 C (8) C (4) + 2 - 2 C (8) - 8 C (2) - 8 C (8) C (2)
x = 6 - 4 C (4) - 6 C (8) - 4 C (8) C (4) - 8 C (2) - 8 C (8) C (2)
x = 6 - 4 c (2) - 6 c (4) - 4 c (4) c (2) - 8 c (1) - 8 c (4) c (1) with domain 1 for 4 Pi/ 7 here.
x = 6 - 4 c (2) - 6 c (4) - 2 [c (6) + c (2)] - 8 c (1) - 4 [c (5) + c (3)]
x = 6 - 4 c (2) - 6 c (4) - 2 c (6) - 2 c (2) - 8 c (1) - 4 c (5) - 4 c (3)
x = 6 - 6 c (2) - 6 c (4) - 2 c (6) - 8 c (1) - 4 c (5) - 4 c (3)
x = 6 - 8 c (1) - 6 c (2) - 4 c (3) - 6 c (4) - 4 c (5) - 2 c (6)
Since c (1) = c (6), c (2) = c (5) and c (3) = c (4) with 1 for 4 Pi/ 7,
x = 6 - 10 c (1) - 10 c (2) - 10 c (3)
x = 6 - 10 [c (1) + c (2) + c (3)]
x = 6 - 10 [-1/ 2]
x = 6 + 5 = 11
I am sorry that this was a result of using calculator.
Cos (4 Pi/ 7) + Cos (8 Pi/ 7) + Cos (12 Pi/ 7) = -0.5 is a special thing which needed to be known.
Please note that the above three Cos are same as Cos {1
(2 pi/7)} + Cos{2
(2 pi/7)} + Cos{3* (2 pi/7)}.
As a general rule, if n is odd ......Cos{1
(2Pi/n)}+Cos{2
(2Pi/n)}+Cos{3
(2Pi/n)}+ . . .+Cos{(n-1)/2
(2Pi/n)}=-0.5.
Similarly Cos{1
(Pi/n)}+Cos{3
(Pi/n)}+Cos{5
(Pi/n)}+ . . .+Cos{(n-2)
(2Pi/n)}=+0.5.
This follows from the roots of unity.
Problem Loading...
Note Loading...
Set Loading...
First I tried to manipulate the right side like this:
Let w = cos ( 7 2 π ) + i sin ( 7 2 π ) , so 2 i w k − w k 1 = sin ( 7 2 π k ) .
The RHS becomes: 2 i w − w 1 + w 2 − w 2 1 + w 3 − w 3 1 . Now, using the fact that w k 1 = w 7 − k then it becomes to: 2 i w − w 6 + w 2 − w 5 + w 3 − w 4 .
Now let a = w + w 2 + w 3 and b = w 4 + w 5 + w 6 , so the RHS is 2 i a − b . Let's compute a + b and a b using the fact that k = 0 ∑ 6 w k = 0 :
a + b = w + w 2 + w 3 + w 4 + w 5 + w 6 = − 1 a b = w 5 + w 6 + 1 + w 6 + 1 + w + 1 + w + w 2 = 3 + 2 ( w + w 1 ) + w 2 + w 2 1
With the identity w k + w k 1 = 2 cos ( 7 2 π k ) we get:
a b = 3 + 4 cos ( 7 2 π ) + 2 cos ( 7 4 π )
Now, using ( a − b ) 2 = ( a + b ) 2 − 4 a b we get:
( a − b ) 2 = ( − 1 ) 2 − 4 ( 3 + 4 cos ( 7 2 π ) + 2 cos ( 7 4 π ) ) ( a − b ) 2 = − 1 6 cos ( 7 2 π ) − 8 cos ( 7 4 π ) − 1 1
That is very similar to the LHS, so we choose the positive sign:
a − b = 1 6 cos ( 7 2 π ) + 8 cos ( 7 4 π ) + 1 1 i
Hence, the RHS is 2 1 6 cos ( 7 2 π ) + 8 cos ( 7 4 π ) + 1 1
Comparing both sides we conclude that x = 1 1 .