Do this without calculator

Geometry Level 4

16 cos ( 2 π 7 ) + 8 cos ( 4 π 7 ) + x 2 = sin ( 2 π 7 ) + sin ( 4 π 7 ) + sin ( 6 π 7 ) \dfrac{\sqrt{16\cos\left(\dfrac{2\pi}{7}\right)+8\cos\left(\dfrac{4\pi}{7}\right)+x}}{2}=\sin\left(\dfrac{2\pi}{7}\right)+\sin\left(\dfrac{4\pi}{7}\right)+\sin\left(\dfrac{6\pi}{7}\right)

Solve the equation above for x x .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First I tried to manipulate the right side like this:

Let w = cos ( 2 π 7 ) + i sin ( 2 π 7 ) w=\cos\left(\dfrac{2\pi}{7}\right)+i\sin\left(\dfrac{2\pi}{7}\right) , so w k 1 w k 2 i = sin ( 2 π k 7 ) \dfrac{w^k-\frac{1}{w^k}}{2i}=\sin\left(\dfrac{2\pi k}{7}\right) .

The RHS becomes: w 1 w + w 2 1 w 2 + w 3 1 w 3 2 i \dfrac{w-\frac{1}{w}+w^2-\frac{1}{w^2}+w^3-\frac{1}{w^3}}{2i} . Now, using the fact that 1 w k = w 7 k \frac{1}{w^k}=w^{7-k} then it becomes to: w w 6 + w 2 w 5 + w 3 w 4 2 i \dfrac{w-w^6+w^2-w^5+w^3-w^4}{2i} .

Now let a = w + w 2 + w 3 a=w+w^2+w^3 and b = w 4 + w 5 + w 6 b=w^4+w^5+w^6 , so the RHS is a b 2 i \dfrac{a-b}{2i} . Let's compute a + b a+b and a b ab using the fact that k = 0 6 w k = 0 \displaystyle\sum_{k=0}^{6} w^k=0 :

a + b = w + w 2 + w 3 + w 4 + w 5 + w 6 = 1 a b = w 5 + w 6 + 1 + w 6 + 1 + w + 1 + w + w 2 = 3 + 2 ( w + 1 w ) + w 2 + 1 w 2 a+b=w+w^2+w^3+w^4+w^5+w^6=-1 \\ ab=w^5+w^6+1+w^6+1+w+1+w+w^2=3+2(w+\frac{1}{w})+w^2+\frac{1}{w^2}

With the identity w k + 1 w k = 2 cos ( 2 π k 7 ) w^k+\frac{1}{w^k}=2\cos\left(\dfrac{2\pi k}{7}\right) we get:

a b = 3 + 4 cos ( 2 π 7 ) + 2 cos ( 4 π 7 ) ab=3+4\cos\left(\dfrac{2\pi}{7}\right)+2\cos\left(\dfrac{4\pi}{7}\right)

Now, using ( a b ) 2 = ( a + b ) 2 4 a b (a-b)^2=(a+b)^2-4ab we get:

( a b ) 2 = ( 1 ) 2 4 ( 3 + 4 cos ( 2 π 7 ) + 2 cos ( 4 π 7 ) ) ( a b ) 2 = 16 cos ( 2 π 7 ) 8 cos ( 4 π 7 ) 11 (a-b)^2=(-1)^2-4\left(3+4\cos\left(\dfrac{2\pi}{7}\right)+2\cos\left(\dfrac{4\pi}{7}\right)\right) \\ (a-b)^2=-16\cos\left(\dfrac{2\pi}{7}\right)-8\cos\left(\dfrac{4\pi}{7}\right)-11

That is very similar to the LHS, so we choose the positive sign:

a b = 16 cos ( 2 π 7 ) + 8 cos ( 4 π 7 ) + 11 i a-b=\sqrt{16\cos\left(\dfrac{2\pi}{7}\right)+8\cos\left(\dfrac{4\pi}{7}\right)+11}i

Hence, the RHS is 16 cos ( 2 π 7 ) + 8 cos ( 4 π 7 ) + 11 2 \dfrac{\sqrt{16\cos\left(\dfrac{2\pi}{7}\right)+8\cos\left(\dfrac{4\pi}{7}\right)+11}}{2}

Comparing both sides we conclude that x = 11 x=\boxed{11} .

Pi Han Goh
Apr 8, 2015

Essentially we want to find

[ 2 sin ( 2 π 7 ) + 2 sin ( 4 π 7 ) + 2 sin ( 6 π 7 ) ] 2 16 cos ( 2 π 7 ) 8 cos ( 4 π 7 ) \left [2 \sin \left ( \frac {2\pi}{7} \right ) + 2 \sin \left ( \frac {4\pi}{7} \right ) + 2 \sin \left ( \frac {6\pi}{7} \right ) \right ]^2 \\ - 16 \cos \left ( \frac {2\pi}{7} \right ) - 8 \cos \left ( \frac {4\pi}{7} \right )

Expand it:

4 sin 2 ( 2 π 7 ) + 4 sin 2 ( 4 π 7 ) + 4 sin 2 ( 6 π 7 ) + 8 sin ( 2 π 7 ) sin ( 4 π 7 ) + 8 sin ( 2 π 7 ) sin ( 6 π 7 ) + 8 sin ( 4 π 7 ) sin ( 6 π 7 ) 16 cos ( 2 π 7 ) 8 cos ( 4 π 7 ) 4\sin^2 \left ( \frac {2\pi}{7} \right ) + 4\sin^2 \left ( \frac {4\pi}{7} \right ) + 4\sin^2 \left ( \frac {6\pi}{7} \right ) \\ + 8 \sin \left ( \frac {2\pi}{7} \right ) \sin \left ( \frac {4\pi}{7} \right ) + 8 \sin \left ( \frac {2\pi}{7} \right ) \sin \left ( \frac {6\pi}{7} \right ) \\ + 8 \sin \left ( \frac {4\pi}{7} \right ) \sin \left ( \frac {6\pi}{7} \right ) - 16 \cos \left ( \frac {2\pi}{7} \right ) - 8 \cos \left ( \frac {4\pi}{7} \right ) \\

Apply the trigonometric identities: 2 sin 2 ( A ) = 1 cos ( 2 A ) , cos ( P ) cos ( Q ) = 2 sin ( P + Q 2 ) sin ( P Q 2 ) 2\sin^2 (A) = 1 - \cos (2A), \cos(P) - \cos(Q) = -2 \sin \left ( \frac {P+Q}{2} \right )\sin \left ( \frac {P-Q}{2} \right )

And for simplicities sake, let x = π 7 x = \frac {\pi}{7} , the expression becomes

2 ( 1 cos ( 4 x ) ) + 2 ( 1 cos ( 8 x ) ) + 2 ( 1 cos ( 12 x ) ) + 4 ( cos ( 6 x ) + cos ( 2 x ) ) + 4 ( cos ( 8 x ) + cos ( 4 x ) ) + 4 ( cos ( 10 x ) + cos ( 2 x ) ) 16 cos ( 2 x ) 8 cos ( 4 x ) 2(1 - \cos(4x)) + 2(1 - \cos(8x) ) + 2 (1 - \cos(12x)) \\ + 4 (-\cos (6x) + \cos(2x)) + 4 ( -\cos(8x) + \cos(4x) ) \\ + 4 ( -\cos(10x) + \cos(2x)) - 16 \cos(2x) - 8 \cos(4x) \\

Simplifying it and applying the periodic properties of trigonometric functions: cos ( A ) = cos ( π A ) , cos ( π + A ) = cos ( A ) \cos(A) = -\cos(\pi - A), \cos(\pi +A) = -\cos(A) gives

6 + 10 [ cos ( x ) cos ( 2 x ) + cos ( 3 x ) ] = 6 + 10 [ cos ( x ) + cos ( 3 x ) + cos ( 5 x ) ] 6 + 10 \bigg [\cos(x) - \cos(2x) + \cos(3x) \bigg] \\= 6 + 10 \bigg [ \cos (x) + \cos(3x) + \cos(5x) \bigg ]

The value of the expression inside the bracket is simply 1 2 \frac 1 2 which could be easily verified . Hence the answer is simply 6 + 10 ( 1 2 ) = 11 6 + 10 \left ( \frac 12 \right ) = \boxed{11}

Perfect solution.

Alan Enrique Ontiveros Salazar - 6 years, 2 months ago

Log in to reply

Your solution is perfecter.

Pi Han Goh - 6 years, 2 months ago

Log in to reply

Yes, but yours is more intuitive and natural.

Alan Enrique Ontiveros Salazar - 6 years, 2 months ago
Lu Chee Ket
Nov 2, 2015

R.H.S. = 2 S (4) C (2) + S (4) = S (4) [ 2 C (2) + 1]

16 C (2) + 8 C (4) + x = 4 S2 (4) [4 C2 (2) + 4 C (2) + 1]

16 C (2) + 8 C (4) + x = 4 S2 (4) 4 C2 (2) + 4 S2 (4) 4 C (2) + 4 S2 (4)

16 C (2) + 8 C (4) + x = 4 [1 - C (8)] [1 + C (4)] + 4 S2 (4) + 16 S2 (4) C (2)

16 C (2) + 8 C (4) + x = 4 + 4 C (4) - 4 C (8) - 4 C (8) C (4) + 4 S2 (4) + 16 [1 - C2 (4)] C (2)

x = 4 - 4 C (4) - 4 C (8) - 4 C (8) C (4) + 2 [1 - C (8)] - 8 [1 + C (8)] C (2)

x = 4 - 4 C (4) - 4 C (8) - 4 C (8) C (4) + 2 - 2 C (8) - 8 C (2) - 8 C (8) C (2)

x = 6 - 4 C (4) - 6 C (8) - 4 C (8) C (4) - 8 C (2) - 8 C (8) C (2)

x = 6 - 4 c (2) - 6 c (4) - 4 c (4) c (2) - 8 c (1) - 8 c (4) c (1) with domain 1 for 4 Pi/ 7 here.

x = 6 - 4 c (2) - 6 c (4) - 2 [c (6) + c (2)] - 8 c (1) - 4 [c (5) + c (3)]

x = 6 - 4 c (2) - 6 c (4) - 2 c (6) - 2 c (2) - 8 c (1) - 4 c (5) - 4 c (3)

x = 6 - 6 c (2) - 6 c (4) - 2 c (6) - 8 c (1) - 4 c (5) - 4 c (3)

x = 6 - 8 c (1) - 6 c (2) - 4 c (3) - 6 c (4) - 4 c (5) - 2 c (6)

Since c (1) = c (6), c (2) = c (5) and c (3) = c (4) with 1 for 4 Pi/ 7,

x = 6 - 10 c (1) - 10 c (2) - 10 c (3)

x = 6 - 10 [c (1) + c (2) + c (3)]

x = 6 - 10 [-1/ 2]

x = 6 + 5 = 11

I am sorry that this was a result of using calculator.

Cos (4 Pi/ 7) + Cos (8 Pi/ 7) + Cos (12 Pi/ 7) = -0.5 is a special thing which needed to be known.

Please note that the above three Cos are same as Cos {1 (2 pi/7)} + Cos{2 (2 pi/7)} + Cos{3* (2 pi/7)}.
As a general rule, if n is odd ......Cos{1 (2Pi/n)}+Cos{2 (2Pi/n)}+Cos{3 (2Pi/n)}+ . . .+Cos{(n-1)/2 (2Pi/n)}=-0.5.
Similarly Cos{1 (Pi/n)}+Cos{3 (Pi/n)}+Cos{5 (Pi/n)}+ . . .+Cos{(n-2) (2Pi/n)}=+0.5. This follows from the roots of unity.

Niranjan Khanderia - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...