Do Trig Ever Age?

Geometry Level 4

2 sin 2 , 4 sin 4 , 6 sin 6 , , 180 sin 18 0 2\sin{2^\circ}, 4\sin{4^\circ}, 6\sin{6^\circ}, \cdots, 180\sin{180^\circ}

Find the average of the above sequence of numbers.

sec 1 \sec{1^\circ} sin 1 \sin{1^\circ} cos 1 \cos{1^\circ} cot 1 \cot{1^\circ} tan 1 \tan{1^\circ} csc 1 \csc{1^\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 11, 2016

The average of the sequence of number is given by:

μ = 1 90 k = 1 90 2 k sin ( 2 k ) As sin 18 0 = 0 = 1 90 k = 1 89 2 k sin ( 2 k ) By a b f ( k ) = a b f ( a + b k ) = 1 180 k = 1 89 ( 2 k sin ( 2 k ) + ( 180 2 k ) sin ( 18 0 2 k ) ) Note: sin ( 18 0 x ) = sin x = k = 1 89 sin ( 2 k ) = k = 1 90 1 sin ( k π 90 ) = cot ( k π 180 ) = cot 1 (see Note.) \begin{aligned} \mu & = \frac 1{90} \sum_{k=1}^{90} 2k\sin (2k^\circ) \quad \quad \small \color{#3D99F6}{\text{As }\sin 180^\circ = 0} \\ & = \frac 1{90} \sum_{k=1}^{\color{#3D99F6}{89}} 2k\sin (2k^\circ) \quad \quad \small \color{#3D99F6}{\text{By }\sum_a^b f(k) = \sum_a^b f(a+b-k)} \\ & = \frac 1{180} \sum_{k=1}^{89} \left(2k\sin (2k^\circ) + (180-2k)\sin (180^\circ -2k^\circ) \right) \quad \quad \small \color{#3D99F6}{\text{Note: }\sin (180^\circ -x) = \sin x} \\ & = \sum_{k=1}^{89} \sin (2k^\circ) = \sum_{k=1}^{90-1} \sin \left(\frac {k\pi}{90} \right) = \cot \left(\frac {k\pi}{180} \right) = \boxed{\cot 1^\circ} \quad \quad \color{#3D99F6}{\text{(see Note.)}} \end{aligned}


Note:

Proving k = 1 n 1 sin ( k π n ) = cot ( k π 2 n ) \displaystyle \sum_{k=1}^{n-1} \sin \left(\frac {k \pi}n \right) = \cot \left(\frac {k \pi}{2n} \right)

k = 1 n 1 sin ( k π n ) = { k = 1 n 1 e k π n i } = { e π n i ( 1 e ( n 1 ) π n i 1 e π n i ) } = { e π n i e π i 1 e π n i } = { e π n i + 1 1 e π n i } = { e π 2 n i + e π 2 n i e π 2 n i e π 2 n i } = { cos ( π 2 n ) i sin ( π 2 n ) } = { i cot ( π 2 n ) } = cot ( π 2 n ) \begin{aligned} \sum_{k=1}^{n-1} \sin \left(\frac {k \pi}n \right) & = \Im \left \{ \sum_{k=1}^{n-1} e^{\frac {k \pi}ni} \right \} = \Im \left \{ e^{\frac \pi n i} \left(\frac {1- e^{\frac {(n-1)\pi}n i}}{1- e^{\frac \pi n i}} \right) \right \} = \Im \left \{ \frac {e^{\frac \pi n i} - e^{\pi i}}{1- e^{\frac \pi n i}} \right \} \\ & = \Im \left \{ \frac {e^{\frac \pi n i} +1}{1- e^{\frac \pi n i}} \right \} = \Im \left \{ \frac {e^{\frac \pi{2n} i} + e^{-\frac \pi{2n} i}}{e^{-\frac \pi{2n} i} - e^{\frac \pi{2n} i}} \right \} = \Im \left \{ \frac {\cos \left(\frac \pi{2n}\right)}{-i \sin \left(\frac \pi{2n}\right)} \right \} \\ & = \Im \left \{i \cot \left(\frac \pi{2n}\right) \right \} = \boxed{\cot \left(\dfrac \pi{2n}\right)} \end{aligned}

Nice usage of symmetry :)

Calvin Lin Staff - 4 years, 8 months ago
Aditya Sky
Oct 16, 2016

Consider S = cos ( 2 x ) + cos ( 4 x ) + cos ( 6 x ) + . . . + cos ( 180 x ) S\,=\,\cos(2x)+\cos(4x)+\cos(6x)+...+\cos(180x) .

Using, n = 1 k cos ( α + ( n 1 ) β ) = sin ( k β 2 ) sin ( β 2 ) cos ( α + ( n 1 ) β 2 ) \sum_{n=1}^k \,\cos \left( \alpha\,+\,(n-1)\cdot \beta \right) \,=\, \dfrac{ \sin \left(k \cdot \dfrac{\beta}{2} \right) }{ \sin \left(\dfrac{\beta}{2} \right)} \cdot \cos\left(\alpha\,+\,(n-1) \cdot \dfrac{\beta}{2} \right)

S = 1 2 sin ( 181 x ) sin ( x ) 1 2 S\,=\,\dfrac{1}{2} \cdot \dfrac{\sin(181x)}{\sin(x)}\,-\,\dfrac{1}{2} .

So, 1 2 sin ( 181 x ) sin ( x ) 1 2 = cos ( 2 x ) + cos ( 4 x ) + cos ( 6 x ) + . . . + cos ( 180 x ) \dfrac{1}{2} \cdot \dfrac{\sin(181x)}{\sin(x)}\,-\,\dfrac{1}{2}\,=\, \cos(2x)+\cos(4x)+\cos(6x)+...+\cos(180x) .

Differentiating with respect to x x ,

1 2 181 sin ( x ) cos ( 181 x ) cos ( x ) sin ( 181 x ) sin 2 ( x ) = ( 2 sin ( 2 x ) + 4 sin ( 4 x ) + 6 sin ( 6 x ) + . . . + 180 sin ( 180 x ) ) \dfrac{1}{2} \cdot \dfrac{181\cdot\sin(x)\cdot \cos(181x)\,-\,\cos(x) \cdot \sin(181x)}{\sin^{2}(x)}\,=\, -\left(2\sin(2x)+4\sin(4x)+6\sin(6x)+...+180\sin(180x) \right) .

Putting x = 1 x\,=\,1 gives, 2 sin ( 2 ) + 4 sin ( 4 ) + 6 sin ( 6 ) + . . . + 180 sin ( 18 0 ) = 90 cot ( 1 ) 2\sin(2^{\circ})+4\sin(4^{\circ})+6\sin(6^{\circ})+...+180\sin(180^{\circ})\,=\,90\cdot \cot(1^{\circ}) . Now, since, there're 90 90 terms in the given sequence, therefore, its average is cot ( 1 ) \cot(1^{\circ}) .

I believe there's a typo in your solution, after you differentiate wrt x.

Note: You should put your punctuation inside the new line Latex.

Calvin Lin Staff - 4 years, 8 months ago

Log in to reply

Sorry for late reply. I've edited my solution.

Aditya Sky - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...