Raising The Stakes

Algebra Level 5

Let A = [ 2 1 1 4 ] A = \begin{bmatrix}2 & 1 \\-1 & 4 \end{bmatrix} and B = A 2016 B = A^{2016} , then find the remainder when b 22 b_{22} is divided by 7.

Clarification : b i j b_{ij} denote element of the matrix B B in the i th i^\text{th} row and j th j^\text{th} column.

0 1 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pranshu Gaba
Sep 6, 2016

By Cayley Hamilton theorem , we can show that A 2 6 A + 9 I 2 = O 2 A^2- 6A + 9 \; \mathbb I_2 =\mathbb O_2 , where I 2 \mathbb I_2 denotes the identity matrix of order 2 and O 2 \mathbb O_2 denotes the zero matrix of order 2. Then ( A 3 I 2 ) 2 = O 2 (A-3\; \mathbb I_2 )^2 = \mathbb O_2 .

Let A 3 I 2 = B A - 3\; \mathbb I_2 = B , we have B 2 = O 2 B^2 = \mathbb O_2 , thus B m = O 2 B^m = \mathbb O_2 for m = 2 , 3 , 4 , m= 2, 3,4,\ldots .

By binomial theorem ,

A n = ( 3 I 2 + B ) n = ( n 0 ) ( 3 I 2 ) n + ( n 1 ) ( 3 I 2 ) n 1 B + ( n 2 ) ( 3 I 2 ) n 2 B 2 + + ( n 2 ) ( 3 I 2 ) n 2 B n = O 2 because B m = O 2 = 3 n I 2 + n 3 n 1 B = 3 n I 2 + n 3 n 1 ( A 3 I 2 ) = n 3 n 1 A ( n 1 ) 3 n I 2 = n 3 n 1 [ 2 1 1 4 ] ( n 1 ) 3 n [ 1 0 0 1 ] = [ ( 3 n ) 3 n 1 n 3 n 1 n 3 n 1 ( n + 3 ) 3 n 1 ] . \Large{ \begin{aligned} A^n &=& (3\; \mathbb I_2 + B)^n \\ &=& \dbinom n0 (3\; \mathbb I_2)^n + \dbinom n1 (3\; \mathbb I_2)^{n-1} B + \underbrace{\dbinom n2 (3\;\mathbb I_2)^{n-2} B^2 + \cdots + \dbinom n2 (3 \; \mathbb I_2)^{n-2} B^n}_{= \; \mathbb O_2 \text{ because } B^m =\; \mathbb O_2} \\ &=& 3^n \; \mathbb I_2 + n\cdot 3^{n-1} B \\ &=& 3^n \; \mathbb I_2 + n\cdot 3^{n-1} (A-3\; \mathbb I_2 ) \\ &=& n \cdot 3^{n-1} A - (n-1) 3^n \; \mathbb I_2 \\ &=& n \cdot 3^{n-1} \begin{bmatrix}2 & 1 \\-1 & 4 \end{bmatrix} - (n-1) 3^n \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} \\ &=& \begin{bmatrix} (3-n) 3^{n-1} & n \cdot 3^{n-1} \\ -n \cdot 3^{n-1} & (n+3) \cdot 3^{n-1} \end{bmatrix} \; . \end{aligned}}

Hence, b 22 b_{22} is equal to ( 2016 + 3 ) 3 2016 1 = 2019 3 2015 (2016+3) \cdot 3^{2016 - 1} = 2019 \cdot 3^{2015} .

By Fermat's little theorem , we can see that b 22 ( m o d 7 ) 3 × 3 5 = 3 7 1 ( m o d 7 ) = 1 b_{22} \pmod 7 \equiv 3\times 3^5 = 3^{7-1} \pmod 7 = \boxed1 .

how did u take A-3I to be equal to B

Zerocool 141 - 4 years, 8 months ago
Yugesh Kothari
Sep 2, 2016

It is trivial to note that A = 3 I + [ 1 1 1 1 ] A = 3I + \begin{bmatrix}-1 & 1 \\-1 & 1 \end{bmatrix} where I I is Identity matrix of order 2 2 .

Now let C = [ 1 1 1 1 ] C = \begin{bmatrix}-1 & 1 \\-1 & 1 \end{bmatrix} . Note that C is nilpotent with n = 2 n=2 .

Therefore,

A 2 = 9 I + 6 C A^{2} = 9I + 6C

A 3 = 27 I + 27 C A^{3} = 27I + 27C

A 4 = 81 I + 108 C A^{4} = 81I + 108C

.

.

.

.

A n = 3 n I + n . 3 n 1 C A^{n} = 3^{n}I + n.3^{n-1}C

So, B = A 2016 = 3 2016 I + 2016. 3 2015 C B = A^{2016} = 3^{2016}I + 2016.3^{2015}C and hence, b 22 = 3 2016 + 2016. 3 2015 1 ( m o d 7 ) b_{22} = 3^{2016} + 2016.3^{2015} \equiv 1 (mod 7) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...