Do you even telescope? - 2

Calculus Level 3

2 ! + 1 ! 2 ! 1 ! × 4 ! + 3 ! 4 ! 3 ! × 6 ! + 5 ! 6 ! 5 ! × \frac{2!+1!}{2!-1!}\times \frac{4!+3!}{4!-3!}\times \frac{6!+5!}{6!-5!}\times \cdots

Find the value of the product above.

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

Hint : Try to express the product using product notation.


Inspiration .

0.5 e e π \pi The product is undefined (or divergent) 1.5 1 1 log 3 ( sin ( e π ) ) \log_3\left(\sin \left(\frac{e}{\pi}\right)\right) None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 29, 2016

P = 2 ! + 1 ! 2 ! 1 ! × 4 ! + 3 ! 4 ! 3 ! × 6 ! + 5 ! 6 ! 5 ! × . . . = n = 1 ( 2 n ) ! + ( 2 n 1 ) ! ( 2 n ) ! ( 2 n 1 ) ! = n = 1 ( 2 n 1 ) ! ( 2 n + 1 ) ( 2 n 1 ) ! ( 2 n 1 ) = lim m n = 1 m 2 n + 1 2 n 1 = lim m 2 m + 1 = The product is undefined. \begin{aligned} P & = \frac{2!+1!}{2!-1!} \times \frac{4!+3!}{4!-3!} \times \frac{6!+5!}{6!-5!} \times ... \\ & = \prod_{n=1}^\infty \frac{(2n)!+(2n-1)!}{(2n)!-(2n-1)!} \\ & = \prod_{n=1}^\infty \frac{(2n-1)!(2n+1)}{(2n-1)!(2n-1)} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \frac{2n+1}{2n-1} \\ & = \lim_{m \to \infty} 2m + 1 \\ & = \infty \quad \Rightarrow \boxed{\text{The product is undefined.}} \end{aligned}

Can't we should conclude that the product is undefined as each term is >>1 and they are infinite number of terms?

A Former Brilliant Member - 5 years, 2 months ago

Log in to reply

Yes, I was thinking to provide the following solution.

P = lim m n = 1 m 2 n + 1 2 n 1 = lim m n = 1 m ( 1 + 2 2 n 1 ) = The product is undefined. \begin{aligned} P & = \lim_{m \to \infty} \prod_{n=1}^m \frac{2n+1}{2n-1} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \left(1+\frac{2}{2n-1}\right) \\ & = \infty \quad \Rightarrow \boxed{\text{The product is undefined.}} \end{aligned}

Chew-Seong Cheong - 5 years, 2 months ago

Your conclusion is correct but the closed form you get for the partial product is wrong.

n = 1 m 2 n + 1 2 n 1 = ( 2 m + 1 ) ! ! ( 2 m 1 ) ! ! = 2 m + 1 m + 2 \prod_{n=1}^m\frac{2n+1}{2n-1}=\frac{(2m+1)!!}{(2m-1)!!}=2m+1\neq m+2

The product diverges because 2 m + 1 2m+1\to\infty as m m\to\infty .

Prasun Biswas - 5 years, 2 months ago

Log in to reply

Thanks, you are right

Chew-Seong Cheong - 5 years, 2 months ago
Fahim Saikat
Apr 1, 2016

2 ! + 1 ! 2 ! 1 ! × 4 ! + 3 ! 4 ! 3 ! × 6 ! + 5 ! 6 ! 5 ! × \frac{2!+1!}{2!-1!}\times \frac{4!+3!}{4!-3!}\times \frac{6!+5!}{6!-5!}\times \cdots = 3 × 5 3 × 7 5 × 9 7 × 3\times \frac{5}{3}\times \frac{7}{5}\times \frac{9}{7}\times \cdots =2n+1 where n = n= \infty so, 2 ! + 1 ! 2 ! 1 ! × 4 ! + 3 ! 4 ! 3 ! × 6 ! + 5 ! 6 ! 5 ! × = \frac{2!+1!}{2!-1!}\times \frac{4!+3!}{4!-3!}\times \frac{6!+5!}{6!-5!}\times \cdots =\infty

. .
Feb 8, 2021

2 ! + 1 ! 2 ! 1 ! × 4 ! + 3 ! 4 ! 3 ! × 6 ! + 5 ! 6 ! 5 ! × = 2 + 1 2 1 × 24 + 6 24 6 × 720 + 120 720 120 × = 3 1 × 30 18 × 840 600 = 3 × 5 3 × 7 5 × = 5 × 7 5 × 9 7 × = \frac{2!+1!}{2!-1!} \times \frac{4!+3!}{4!-3!} \times \frac{6!+5!}{6!-5!} \times \cdots = \frac{2+1}{2-1} \times \frac{24+6}{24-6} \times \frac{720+120}{720-120} \times \cdots = \frac{3}{1} \times \frac{30}{18} \times \frac{840}{600} \cdots = 3 \times \frac{5}{3} \times \frac{7}{5} \times \cdots = 5 \times \frac{7}{5} \times \frac{9}{7} \times \cdots = \infty So the answer is \boxed{ \infty} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...