Do you hate square roots?

Algebra Level 4

{ x y = 30 y x x x = 35 y y \large{\begin{cases} x \sqrt{y} = 30 - y \sqrt{x} \\ x \sqrt{x} = 35 - y \sqrt{y} \end{cases}} Let x x and y y be positive real numbers satisfying the system of equations above. Find x 2 + y 2 + 3 \sqrt{x^2+y^2+3} .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

x y = 30 y x \Rightarrow x\sqrt{y}=30-y\sqrt{x}

x y + y x = 30 \color{#3D99F6}{x\sqrt{y}+y\sqrt{x}}=30

x x = 35 y y \Rightarrow x\sqrt{x}=35-y\sqrt{y}

x x + y y = 30 + 5 x\sqrt{x}+y\sqrt{y}=30+5

x x + y y = ( x y + y x ) + 5 x\sqrt{x}+y\sqrt{y}=(\color{#3D99F6}{x\sqrt{y}+y\sqrt{x}})+5

x x y x + y y x x = 5 x\sqrt{x}-y\sqrt{x}+y\sqrt{y}-x\sqrt{x}=5

x ( x y ) y ( x y ) = 5 \sqrt{x}(x-y)-\sqrt{y}(x-y)=5

( x y ) ( x y ) = 1 × 5 (\sqrt{x}-\sqrt{y})(x-y)=1×5

Now by comparing,
We get x = 9 x=9 and y = 4 y=4 .

Putting these values in x 2 + y 2 + 3 \sqrt{x^2+y^2+3} .

( 9 ) 2 + ( 4 ) 2 + 3 = 100 = 10 \sqrt{(9)^2+(4)^2+3}=\sqrt{100}=\boxed{10}

Good solution

Amaya Solanki - 5 years, 1 month ago

I did it the same way...

Puneet Pinku - 5 years, 1 month ago

Nice way of thinking. Up voted.

Niranjan Khanderia - 3 years, 4 months ago
Chew-Seong Cheong
Apr 21, 2016

{ x y = 30 y x . . . ( 1 ) x x = 35 y y . . . ( 2 ) \begin{cases} x \sqrt{y} = 30 - y \sqrt{x} & ...(1) \\ x \sqrt{x} = 35 - y \sqrt{y} & ...(2) \end{cases}

( 1 ) : x y = 30 y x x y + y x = 30 Let a = x and b = y a 2 b + a b 2 = 30 a b ( a + b ) = 30 Let α = a + b and β = a b α β = 30 \begin{aligned} (1): \quad \quad \quad \quad x\sqrt{y} & = 30 - y\sqrt{x} \\ x\sqrt{y} + y\sqrt{x} & = 30 \quad \quad \quad \quad \small \color{#3D99F6}{\text{Let } a=\sqrt{x} \text{ and } b=\sqrt{y}} \\ a^2b + ab^2 & = 30 \\ \Rightarrow \color{#D61F06}{ab} \color{#3D99F6}{(a+b)} & = 30 \quad \quad \quad \quad \small \text{Let } \color{#3D99F6}{\alpha = a+b} \text{ and } \color{#D61F06}{\beta = ab} \\ \color{#3D99F6}{\alpha} \color{#D61F06}{\beta} & = \color{#3D99F6}{30} \end{aligned}

( 2 ) : x x = 35 y y x x + y y = 35 a 3 + b 3 = 35 ( a + b ) ( a 2 + b 2 a b ) = 35 ( a + b ) [ ( a + b ) 2 3 a b ] = 35 α 3 3 α β = 35 α 3 3 ( 30 ) = 35 α 3 = 125 α = 5 β = 6 \begin{aligned} (2): \quad \quad \quad \quad \quad \quad \quad x\sqrt{x} & = 35 - y\sqrt{y} \\ x\sqrt{x} + y\sqrt{y} & = 35 \\ a^3 + b^3 & = 35 \\ (a+b)(a^2+b^2-ab) & = 35 \\ (a+b)[(a+b)^2 - 3ab] & = 35 \\ \alpha^3 - 3 \color{#3D99F6}{\alpha} \color{#D61F06}{\beta} & = 35 \\ \alpha^3 - 3 (\color{#3D99F6}{30}) & = 35 \\ \Rightarrow \alpha^3 & = 125 \\ \alpha & = 5 \\ \Rightarrow \beta & = 6 \end{aligned}

Now we have:

x 2 + y 2 + 3 = a 4 + b 4 + 3 = ( a + b ) ( a 3 + b 3 ) a b ( a 2 + b 2 ) + 3 = 35 α β ( α 2 2 β ) + 3 = 35 ( 5 ) 6 ( 5 2 2 ( 6 ) ) + 3 = 100 = 10 \begin{aligned} \sqrt{x^2+y^2+3} & = \sqrt{a^4+b^4+3} \\ & = \sqrt{(a+b)(a^3+b^3)-ab(a^2+b^2)+3} \\ & = \sqrt{35\alpha - \beta(\alpha^2 -2\beta) +3} \\ & = \sqrt{35(5) - 6(5^2 -2(6)) + 3} \\ & = \sqrt{100} \\ & = \boxed{10} \end{aligned}

Though slightly lengthy but provides again a new way to look into problems...

Puneet Pinku - 5 years, 1 month ago
William Isoroku
May 2, 2016

Rewrite the 2 equations:

x y + y x = 30 x\sqrt { y } +y\sqrt { x } =30

x x + y y = 35 x\sqrt { x } +y\sqrt { y } =35

Square both equations:

x 2 y + 2 x y x y + x y 2 = 30 2 { x }^{ 2 }y+2xy\sqrt { xy } +x{ y }^{ 2 }={ 30 }^{ 2 }

x 3 + 2 x y x y + y 3 = 35 2 { x }^{ 3 }+2xy\sqrt { xy } +{ y }^{ 3 }={ 35 }^{ 2 }

Subtract: x 3 x 2 y + y 3 y 2 x = 35 2 30 2 = 325 { x }^{ 3 }-{ x }^{ 2 }y+{ y }^{ 3 }-{ y }^{ 2 }x={ 35 }^{ 2 }-{ 30 }^{ 2 }=325

Grouping: ( x y ) ( x 2 y 2 ) = ( x + y ) ( x y ) 2 = 325 (x-y)({ x }^{ 2 }-{ y }^{ 2 })=(x+y){ (x-y })^{ 2 }=325

The only square factors of 325 are 1 and 25, but 1 will not work. So this diophantine equation can only have 2 solutions that can be yielded from:

x + y = 13 x+y=13

x y = ± 5 x-y=\pm 5

Yay ! Same method .

Chirayu Bhardwaj - 5 years, 1 month ago

Adding and subtracting the equations ,we get

( x y ) ( x y ) = 5 (x - y) (\sqrt x - \sqrt y) = 5 and ( x + y ) ( x + y ) = 65 (x + y) (\sqrt x + \sqrt y) = 65

Multiplying them, ( x 2 y 2 ) ( x y ) = 65 × 5 (x^2 - y^2)(x - y) = 65\times 5

Let, ( x 2 y 2 ) = 65 (x^2 - y^2) = 65 and ( x y ) = 5 x = y + 5 (x - y) = 5 \Rightarrow x = y + 5

( y + 5 ) 2 y 2 = 65 y = 4 (y + 5)^2 - y^2 = 65\Rightarrow y = 4 Therefore, x = 4 + 5 = 9 x = 4 + 5 = 9

x 2 + y 2 + 3 = 9 2 + 4 2 + 3 = 100 = 10 \sqrt{x^2 + y^2 + 3} = \sqrt{9^2 + 4^2 + 3} = \sqrt{100}= \boxed{10}

F o r e a s e o f c a l c u l a t i o n s , l e t a = x , a n d b = y . T h e t w o e q u a t i o n s a r e : ( A ) a 3 + b 3 = 35 , ( B ) a b ( a + b ) = 30. A n d ( C ) x 2 + y 2 + 3 = a 4 + b 4 + 3 . F r o m ( A ) a 3 + b 3 = 27 + 8 = 3 3 + 2 3 = 35. a = 3 a n d b = 2. S u b s t i t u t i n g i n ( B ) , L H S = 3 2 ( 3 + 2 ) = 30 = R H S . S o a I S E Q U A L T O 3 a n d b I S E Q U A L T O 2. a 4 + b 4 + 3 = 81 + 16 + 3 = 10. F r o m ( C ) x 2 + y 2 + 3 = 10. For~ease~of~calculations,~let~a=\sqrt x,~~~and~~~b=\sqrt y.\\ \therefore~The ~two~equations~are:-\\ (A)~~~a^3+b^3=35,~~~~~~~~~~(B)~~~ab(a+b)=30.\\ And~(C)~~~\sqrt{x^2+y^2+3}=\sqrt{a^4+b^4+3}.\\ From~(A)~~~a^3+b^3=27+8=3^3+2^3=35.~~~\therefore~a=3~~and~~b=2.\\ Substituting~in~(B),~~LHS=3*2(3+2)=30=RHS.\\ So~a~IS~~ EQUAL~~TO~3~~and~~b~IS~~EQUAL~~TO~2.\\ \implies~\sqrt{a^4+b^4+3}=\sqrt{81+16+3}=10.\\ From~~(C)~~\sqrt{x^2+y^2+3}=\Large~~~\color{#D61F06}{10}.

Mayank Baghel
Apr 22, 2016

Its all quite simple if you can visualise what exactly it needs. Though its a hit and trial but its works quite often. Lets take x=9 and Y = 4. Its statifies both the equations and hence, The answer is 10.

How can you tell they're integers?

Bru No - 5 years, 1 month ago

Log in to reply

Sometimes it is good to try and guess integer solutions to equations.

Jack Lam - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...