Do you have to solve for the functions

Calculus Level 3

Which of the following systems of linear ODE's is equivalent as the following 3rd order differential equation?

3 s i n 3 t d 3 x d t 3 + 2 c o s 3 t d 2 x d t 2 w t l n t d x d t = e x t l n x 3 sin\: 3t\: \frac {d^{3} x}{d t^{3}} + 2cos \: 3t\: \frac {d^{2} x}{d t^{2}} - wt\: ln\:t \: \frac{dx}{dt} = e^{xt}\: lnx


A.

y 1 = y 2 + y 3 + y 2 y'_{1} = y_{2} + y_{3} + y'_{2}

y 2 = y 3 y 2 y 1 y'_{2} = y_{3} - y_{2} - y'_{1}

y 3 = [ ( e y 1 t l n y 1 ) ( w t l n t ) y 2 ] ( 1 + 1 9 c o t 2 3 t ) ( 2 3 t a n 3 t ) y 3 \large y'_{3} = [(e^{y_{1}t} ln \:y_{1}) - (wt ln\: t )\: y_{2}] (1 + \frac{1}{9}cot^{2}\: 3t) - (\frac {2}{3}tan\: 3t) \: y_{3}


B.

y 1 = y 3 y'_{1} = y_{3}

y 2 = y 3 y 2 y 1 y'_{2} = y_{3} - y_{2} - y_{1}

y 3 = ( e y 1 t l n y 1 ) + ( w t l n t ) y 2 3 s i n 3 t ( 2 3 c o t 3 t ) y 3 \large y'_{3} = \frac {(e^{y_{1}t} ln \:y_{1}) + (wt ln\: t )\: y_{2}}{3 sin \: 3t } - (\frac {2}{3}cot\: 3t) \: y_{3}


C.

y 1 = y 2 y'_{1} = y_{2}

y 2 = y 3 y'_{2} = y_{3}

y 3 = c s c 2 3 t [ ( e y 1 t l n y 1 ) + ( w t l n t ) y 2 3 s i n 3 t ] ( 2 3 t a n 3 t ) y 3 \large y'_{3} = csc^{2} 3t\: [\frac {(e^{y_{1}t} ln \:y_{1}) + (wt ln\: t )\: y_{2}}{3 sin \: 3t }] - (\frac {2}{3}tan\: 3t) \: y_{3}


D.

y 1 = y 2 y'_{1} = y_{2}

y 2 = y 3 y'_{2} = y_{3}

y 3 = 1 3 c s c 3 t [ ( e y 1 t l n y 1 ) + ( w t l n t ) y 2 ] ( 2 3 c o t 3 t ) y 3 \large y'_{3} = \frac{1}{3} csc\: 3t [(e^{y_{1}t} ln \:y_{1}) + (wt ln\: t )\: y_{2}] - (\frac {2}{3}cot \: 3t) \: y_{3}


Note: f ( t ) = d f d t f' (t) = \frac {df}{dt}

C D A, D, C None of the options B A A, B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...