Do you know how use pythagoras?

Geometry Level 5

A B C \triangle ABC has B A C = 90 ° \angle BAC=90° , D D and E E are points in A C AC and B C BC , respectively, such that A E AE and B C BC are perpendiculars and B D = D C = E C = 1 BD=DC=EC=1 . Find A C AC longitude.


The answer is 1.2599.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Paola Ramírez
Jan 7, 2015

A E C B A C A C B C = E C A C A C 2 = B C \triangle AEC \sim \triangle BAC \rightarrow \frac{AC}{BC}=\frac{EC}{AC} \therefore AC^2=BC

As A B C \triangle ABC is rectangle

A B 2 + ( A D + 1 ) 2 = B C 2 AB^2 +(AD+1)^2=BC^2

Substitute

A B 2 + ( A D + 1 ) 2 = ( A C 2 ) 2 = A C 4 AB^2 +(AD+1)^2=(AC^2)^2=AC^4

( A B 2 + A D 2 + 2 A D + 1 = A C 4 (AB^2 +AD^2+2AD+1=AC^4

Now, by pythagoras in B A D , B D 2 + A D 2 = 1 \triangle BAD, BD^2+AD^2=1

Substitute in ( A B 2 + A D 2 + 2 A D + 1 = A C 4 (AB^2 +AD^2+2AD+1=AC^4

1 + 1 + 2 A D = A C 4 1+1+2AD=AC^4

2 + 2 A D = A C 4 2+2AD=AC^4

2 ( 1 + A D ) = A C 4 2(1+AD)=AC^4 but A D + 1 = A C AD+1=AC

2 ( A C ) = A C 4 2(AC)=AC^4

2 = A C 3 2=AC^3

A C = 2 3 AC=\sqrt[3]{2}

As A B C \triangle ABC is rectangle

PLEASE CORRECT THIS.

Priyanshu Mishra - 4 years, 7 months ago
James Pohadi
Dec 31, 2016

Let B C D \angle BCD be x x . Since B C D \triangle BCD is an isosceles triangle ( B D = D C ) (BD=DC) , C B D \angle CBD is also x x .

A D B = B C D + C B D = x + x = 2 x \angle ADB=\angle BCD+\angle CBD=x+x=2x

c o s A D B = k 1 k = c o s A D B = c o s 2 x cos \angle ADB=\dfrac{k}{1} \leftrightarrow \color{#3D99F6}{k=cos \angle ADB=cos 2x \text{ } ^{*}}

c o s B C D = 1 1 + k c o s x = 1 1 + c o s 2 x = 1 1 + 2 c o s 2 x 1 = 1 2 c o s 2 x c o s 3 x = 1 2 c o s x = 2 1 3 \begin{aligned} cos \angle BCD&=\dfrac{1}{1+\color{#3D99F6}{k}} \\ cosx&=\dfrac{1}{1+ \color{#3D99F6}{cos 2x}} =\dfrac{1}{1+ 2cos^{2}x-1} = \dfrac{1}{2cos^{2}x} \\ cos^{3} x&=\dfrac{1}{2} \\ \color{#D61F06}{cos x}&=\color{#D61F06}{2 ^{-\frac{1}{3}}} \end{aligned}

From \color{#3D99F6}{^*} , we have

k = c o s 2 x = 2 × c o s 2 x 1 k + 1 = 2 c o s 2 x = 2 × ( 2 1 3 ) 2 k + 1 = 2 1 3 \begin{aligned} \color{#3D99F6}{k}&=\color{#3D99F6}{cos 2x} \color{#333333}{ = 2} \times \color{#D61F06}{cos^{\color{#333333}{2}}x} \color{#333333}{-1} \\ k+1&=2 \color{#D61F06}{cos}^{\color{#333333}{2}} \color{#D61F06}{x} \color{#333333}{=2 \times} \color{#D61F06}{(2 ^{-\frac{1}{3}} )^{\color{#333333}{2}}} \\ k+1&=2^{\frac{1}{3}}\end{aligned}

We know that A C = k + 1 AC=k+1 , so A C = 2 1 3 AC=\boxed{2^{\frac{1}{3}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...