Do you know its Property-3

Algebra Level 5

a n a_n is the nth term of an increasing arithmetic progression. If r = 1 4000 1 a r a r + 1 = 10 \sum_{r=1}^{4000}\frac{1}{a_r a_{r+1}}=10 and a 2001 = 25 a_{2001}=25 , what is the value of a 1 a 4001 |a_1-a_{4001}| ?

You can try more such problems of the set Do you know its property ?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Oct 12, 2014

A s i t i s i n c r e a s i n g A P s o d i s + v e 1 a r a r + 1 = 1 a r ( a r + d ) = 1 d ( 1 a r 1 a r + d ) = 1 d ( 1 a r 1 a r + 1 ) r = 1 4000 1 a r a r + 1 = 1 d ( 1 a 1 1 a 4000 + 1 ) = 1 d ( 1 a 1 1 a 4001 ) = 10 a 1 = a 2001 2000 d = 25 2000 d a 4001 = a 2001 + 2000 d = 25 + 2000 d 10 = 1 d ( 1 a 1 1 a 4001 ) = 1 d ( 1 25 2000 d 1 25 + 2000 d ) = 4000 ( 25 ) 2 ( 2000 d ) 2 ( 2000 d ) 2 = 625 400 = 225 2000 d = 15 ( a s d i s + v e ) a 1 a 4001 = 4000 d = 30 = 30 As\quad it\quad is\quad increasing\quad AP\quad so\quad d\quad is\quad +ve\\ \\ \cfrac { 1 }{ { a }_{ r }{ a }_{ r+1 } } =\cfrac { 1 }{ { a }_{ r }({ a }_{ r }+d) } =\cfrac { 1 }{ d } \left( \cfrac { 1 }{ { a }_{ r } } -\cfrac { 1 }{ { a }_{ r }+d } \right) =\cfrac { 1 }{ d } \left( \cfrac { 1 }{ { a }_{ r } } -\cfrac { 1 }{ { a }_{ r+1 } } \right) \\ \\ \therefore \sum _{ r=1 }^{ 4000 }{ \cfrac { 1 }{ { a }_{ r }{ a }_{ r+1 } } = } \cfrac { 1 }{ d } \left( \cfrac { 1 }{ { a }_{ 1 } } -\cfrac { 1 }{ { a }_{ 4000+1 } } \right) =\cfrac { 1 }{ d } \left( \cfrac { 1 }{ { a }_{ 1 } } -\cfrac { 1 }{ { a }_{ 4001 } } \right) =10\\ \\ { a }_{ 1 }={ a }_{ 2001 }-2000d=25-2000d\\ \\ { a }_{ 4001 }={ a }_{ 2001 }+2000d=25+2000d\\ \\ \therefore 10=\cfrac { 1 }{ d } \left( \cfrac { 1 }{ { a }_{ 1 } } -\cfrac { 1 }{ { a }_{ 4001 } } \right) =\cfrac { 1 }{ d } \left( \cfrac { 1 }{ 25-2000d } -\cfrac { 1 }{ 25+2000d } \right) =\cfrac { 4000 }{ { (25) }^{ 2 }-{ (2000d) }^{ 2 } } \\ \\ \Rightarrow { \left( 2000d \right) }^{ 2 }=625-400=225\\ \\ \Rightarrow 2000d=15\left( as\quad d\quad is\quad +ve \right) \\ \\ \left| { a }_{ 1 }-{ a }_{ 4001 } \right| =\left| -4000d \right| =\left| -30 \right| =30

I actually found this solution quite elegant. Nice telescoping.

Eric Kim - 6 years, 7 months ago

Since a n a_n is an increasing sequence, the value should be negative.

Those who previously answered -30 have been marked correct. I updated this question to state a 1 a 4001 |a_1 - a_{4001} | . Can you update your solution accordingly?

In future, if you spot any errors with a problem, you can “report” it by selecting the “dot dot dot” menu in the lower right corner. You will get a more timely response that way.

Calvin Lin Staff - 6 years, 5 months ago

Log in to reply

Updated,Sir.

Ayush Verma - 6 years, 5 months ago

did just like u:)

A Former Brilliant Member - 4 years, 4 months ago

I found the same solution.Congratulations!

Kristian Vasilev - 6 years, 7 months ago
Sanjeet Raria
Oct 12, 2014

There's another cute property of AP- ( k 1 ) a 1 a k + 1 a k a k + 1 = k a 1 a k + 1 \huge\boxed {\frac{(k-1)}{a_1 a_k}+\frac{1}{a_k a_{k+1}}=\frac{k}{a_1 a_{k+1}}} (Try proving it) \textbf{(Try proving it)} Using this we can telescope the sum, 4000 a 1 a 4001 = 10 a 1 a 4001 = 400 \Rightarrow \frac{4000}{a_1 a_{4001}}=10\Rightarrow a_1 a_{4001}=400 Now 2 a 2001 = 50 = a 1 + a 4001 (why) \large 2a_{2001}=50=a_1+a_{4001}\text {(why)} ( a 1 a 4001 ) 2 = ( a 1 + a 4001 ) 2 4 a 1 a 4001 = 900 \Rightarrow (a_1-a_{4001})^2=(a_1+a_{4001})^2-4 a_1 a_{4001}=900 a 1 a 4001 = 30 \large |a_1-a_{4001}|=\boxed{30}

2 a 2001 = a 2001 + a 2001 2a_{2001} = a_{2001} + a_{2001}

= a 1 + 2000 d + a 1 + 2000 d = a_{1} + 2000d + a_{1} + 2000d

= a 1 + ( a 1 + 4000 d ) = a_{1} + ( a_{1} + 4000d)

= a 1 + a 4001 = a_{1} + a_{4001}

U Z - 6 years, 8 months ago

Log in to reply

Sum of. 1st and the last term is equal to the average of series= mid term.

Shamoel Ahmad - 5 years, 10 months ago

Nice Solution as well Nice question..... Did It with The same Way..... Very Nice problem...

Akshay Sant - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...