Do you know the best way to integrate this?

Calculus Level 4

0 1 x 2 tan 1 x d x = π A B ln C D \large \int_{0}^{1} x^2 \tan^{-1} x \,dx = \dfrac{\pi}{A} -\dfrac{B-\ln C}{D} If the above equation holds true for positive integers A A , B B , C C and D D such that D D is minimized, find A + B + C + D A+B+C+D .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 21, 2016

Similar solution to @Noel Lo 's, perhaps better presentation.

I = 0 1 x 2 tan 1 x d x By integration by parts, f = x 2 , g = tan 1 x = x 3 3 tan 1 x 0 1 1 3 0 1 x 3 1 + x 2 d x = 1 3 π 4 1 3 0 1 x + x 3 x 1 + x 2 d x = π 12 1 3 0 1 ( x x 1 + x 2 ) d x = π 12 1 3 [ x 2 2 1 2 ln ( 1 + x 2 ) ] 0 1 = π 12 1 ln 2 6 \begin{aligned} I & = \int_0^1 x^2 \tan^{-1} x \ dx \quad \quad \small \color{#3D99F6}{\text{By integration by parts, }f' = x^2, \ g = \tan^{-1}x} \\ & = \frac {x^3}3 \tan^{-1}x \bigg|_0^1 - \frac 13 \int_0^1 \frac {x^3}{1+x^2} dx \\ & = \frac 13 \frac \pi 4 - \frac 13 \int_0^1 \frac {x+x^3-x}{1+x^2} dx \\ & = \frac \pi{12} - \frac 13 \int_0^1 \left(x - \frac {x}{1+x^2} \right) dx \\ & = \frac \pi{12} - \frac 13 \left[ \frac {x^2}2 - \frac 12 \ln (1+x^2) \right] _0^1 \\ & = \frac \pi{12} - \frac {1-\ln 2}6 \end{aligned}

A + B + C + D = 12 + 1 + 2 + 6 = 21 \implies A+B+C+D = 12+1+2+6 = \boxed{21}

Noel Lo
Jun 20, 2016

0 1 x 2 tan 1 x d x = [ 0 1 x 2 d x ] [ tan 1 x ] 0 1 0 1 [ x 2 d x ] [ d d x tan 1 x ] d x \int_{0}^{1} x^2 \tan^{-1} x \,dx =[\int_{0}^{1} x^2 \,dx] [\tan^{-1} x]_{0}^{1} - \int_{0}^{1}[\int \, x^2 \,dx][\dfrac{d}{dx}\tan^{-1} x] \,dx = [ x 3 3 ] 0 1 [ tan 1 x ] 0 1 0 1 [ x 3 3 ] [ 1 1 + x 2 ] d x = [ 1 3 ] [ π 4 ] 1 3 0 1 [ x 3 1 + x 2 ] d x =[\dfrac{x^3}{3}]_{0}^{1} [\tan^{-1} x]_{0}^{1} - \int_{0}^{1}[\frac{x^3}{3}][\dfrac{1}{1+x^2}]\,dx = [\dfrac{1}{3}][\dfrac{\pi}{4}] - \dfrac{1}{3} \int_{0}^{1}[\dfrac{x^3}{1+x^2}]\,dx = π 12 1 3 0 1 [ x x 1 + x 2 ] d x = π 12 1 3 2 0 1 [ 2 x 2 x 1 + x 2 ] d x =\dfrac{\pi}{12} - \dfrac{1}{3} \int_{0}^{1}[x-\dfrac{x}{1+x^2}]\,dx=\dfrac{\pi}{12} - \dfrac{1}{3*2} \int_{0}^{1}[2x-\dfrac{2x}{1+x^2}]\,dx = π 12 1 6 [ x 2 l n ( 1 + x 2 ) ] 0 1 = π 12 1 6 [ 1 l n 2 ( 0 l n 1 ) ] = π 12 1 l n 2 6 =\dfrac{\pi}{12} - \dfrac{1}{6} [x^2- ln \,(1+x^2)]_{0}^{1} =\dfrac{\pi}{12} -\dfrac{1}{6}[1-ln\, 2 - (0-ln\, 1)]=\dfrac{\pi}{12} -\dfrac{1-ln \,2}{6}

Hence A + B + C + D = 12 + 1 + 2 + 6 = 21 A+B+C+D = 12+1+2+6=\boxed{21}

Akhil D
Jun 21, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...