Do you know the reverse process? 2

Algebra Level 5

f ( x ) = a x 3 + b x 2 + c x + d f(x)=ax^3+bx^2+cx+d such that a , b , c , d ϵ N a,b,c,d \epsilon N

Gives,

f ( 1 ) + f ( 2 ) = 51 f(1)+f(2)=51

f ( 2 ) + f ( 3 ) = 111 f(2)+f(3)=111

f ( 3 ) + f ( 4 ) = 213 f(3)+f(4)=213 and,

f ( 5 ) = 231 f(5)=231

Then evaluate ,

( a , b , c , d ) ( a , b , c , d ) (\sum a,b,c,d)(\prod a,b,c,d)

This problem is original.


The answer is 1350.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 23, 2015

It is given that f ( x ) = a x 3 + b x 2 + c x + d f(x) = ax^3 + bx^2 + cx + d , where a , b , c , d N a,b,c,d \in N . It is also given that:

{ f ( 1 ) + f ( 2 ) = 9 a + 5 b + 3 c + 2 d = 51 . . . ( 1 ) f ( 2 ) + f ( 3 ) = 35 a + 13 b + 5 c + 2 d = 111 . . . ( 2 ) f ( 3 ) + f ( 4 ) = 91 a + 25 b + 7 c + 2 d = 213 . . . ( 3 ) f ( 5 ) = 125 a + 25 b + 5 c + d = 231 . . . ( 4 ) \begin{cases} f(1)+f(2) & = 9a+5b+3c+2d & = 51 &...(1) \\ f(2)+f(3) & = 35a + 13b + 5c + 2d & = 111 &...(2) \\ f(3) + f(4) & = 91a+25b+7c+2d & = 213 &...(3) \\ f(5) & = 125a+25b+5c+d & = 231 &...(4) \end{cases}

From (4), for a , b , c , d N a,b,c,d \in N , a a can only be 1 1 because if a = 2 a=2 and the minimum value of f ( 5 ) = 250 + 25 + 5 + 1 = 281 > 231 f(5) = 250 + 25+5+1 = 281 > 231 , when b = c = d = 1 b=c=d=1 . Substituting a = 1 \color{#3D99F6}{a = 1} in the rest of the equations, we have:

{ ( 1 ) : 5 b + 3 c + 2 d = 42 . . . ( 1 a ) ( 2 ) : 13 b + 5 c + 2 d = 76 . . . ( 2 a ) ( 3 ) : 25 b + 7 c + 2 d = 122 . . . ( 3 a ) \begin{cases} (1): & 5b+3c+2d & = 42 &...(1a) \\ (2): & 13b + 5c + 2d & = 76 &...(2a) \\ (3): & 25b+7c+2d & = 122 &...(3a) \end{cases}

( 2 a ) ( 3 a ) : 8 b + 2 c = 34 4 b + c = 17 . . . ( 5 ) ( 3 a ) ( 2 a ) : 12 b + 2 c = 46 6 b + c = 23 . . . ( 6 ) ( 6 ) ( 5 ) : 2 b = 6 b = 3 ( 5 ) : 4 ( 3 ) + c = 17 c = 5 ( 1 a ) : 5 ( 3 ) + 3 ( 5 ) + 2 d = 42 d = 6 \begin{array} {rlll} (2a)-(3a): & 8b+2c = 34 & \Rightarrow 4b+c = 17 &...(5) \\ (3a)-(2a): & 12b+2c = 46 & \Rightarrow 6b+c = 23 &...(6) \\ (6)-(5): & 2b = 6 & \Rightarrow \color{#3D99F6}{b = 3} \\ (5): & 4(3)+c = 17 & \Rightarrow \color{#3D99F6}{c = 5} \\ (1a): & 5(3)+3(5)+2d = 42 & \Rightarrow \color{#3D99F6}{d = 6} \end{array}

( a + b + c + d ) a b c d = ( 1 + 3 + 5 + 6 ) ( 1 × 3 × 5 × 6 ) = 15 × 90 = 1350 \Rightarrow (a+b+c+d)abcd = (1+3+5+6)(1\times 3\times 5\times 6) = 15 \times 90 = \boxed{1350}

Previous solution using matrix calculations. \color{#3D99F6}{\text{Previous solution using matrix calculations.}}

{ f ( 1 ) = a + b + c + d f ( 2 ) = 8 a + 4 b + 2 c + d f ( 3 ) = 27 a + 9 b + 3 c + d f ( 4 ) = 64 a + 16 b + 4 c + d f ( 5 ) = 125 a + 25 b + 5 c + d \begin{cases} f(1) = a+b+c+d \\ f(2) = 8a + 4b + 2c + d \\ f(3) = 27a + 9b + 3c + d \\ f(4) = 64a + 16b + 4c + d \\ f(5) = 125a + 25b + 5c + d \end{cases}

{ f ( 1 ) + f ( 2 ) = 9 a + 5 b + 3 c + 2 d = 51 f ( 2 ) + f ( 3 ) = 35 a + 13 b + 5 c + 2 d = 111 f ( 3 ) + f ( 4 ) = 91 a + 25 b + 7 c + 2 d = 213 f ( 5 ) = 125 a + 25 b + 5 c + 1 d = 231 \Rightarrow \begin{cases} f(1)+f(2) & = 9a + 5b + 3c + 2d & =51 \\ f(2)+f(3) & = 35a + 13b + 5c + 2d & =111 \\ f(3)+f(4) & = 91a + 25b + 7c + 2d & =213 \\ f(5) & = 125a + 25b + 5c + 1d & =231 \end{cases}

( 9 5 3 2 35 13 5 2 91 25 7 2 125 25 5 1 ) ( a b c d ) = ( 51 111 213 231 ) ( a b c d ) = ( 9 5 3 2 35 13 5 2 91 25 7 2 125 25 5 1 ) 1 ( 51 111 213 231 ) = 1 90 ( 7 20 17 7 74 195 150 60 254 564 379 136 270 450 269 90 ) ( 51 111 213 231 ) = ( 1 3 5 6 ) \begin{aligned} \Rightarrow \begin{pmatrix} 9 & 5 & 3 & 2 \\ 35 & 13 & 5 & 2 \\ 91 & 25 & 7 & 2 \\ 125 & 25 & 5 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & = \begin{pmatrix} 51 \\ 111 \\ 213 \\ 231 \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & = \begin{pmatrix} 9 & 5 & 3 & 2 \\ 35 & 13 & 5 & 2 \\ 91 & 25 & 7 & 2 \\ 125 & 25 & 5 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 51 \\ 111 \\ 213 \\ 231 \end{pmatrix} \\ & = \frac{1}{90} \begin{pmatrix}-7 & 20 & -17 & 7 \\ 74 & -195 & 150 & -60 \\ -254 & 564 & -379 & 136 \\ 270 & -450 & 269 & -90 \\ \end{pmatrix} \begin{pmatrix} 51 \\ 111 \\ 213 \\ 231 \end{pmatrix} \\ & = \begin{pmatrix} 1 \\ 3 \\ 5 \\ 6 \end{pmatrix} \end{aligned}

( a + b + c + d ) a b c d = 15 × 90 = 1350 \Rightarrow (a+b+c+d)abcd = 15 \times 90 = \boxed{1350}

Any other method? This is too tedius . That's why i chose to click discuss solution

Aakash Khandelwal - 5 years, 7 months ago

Log in to reply

The other method I know is Gaussian elimination, which is as tedious. I actually used Excel spreadsheet to do the matrix calculations.

Chew-Seong Cheong - 5 years, 7 months ago

Aakash, I have found a simple solution. See the revised solution.

Chew-Seong Cheong - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...