Do you know the reverse process?

Algebra Level 3

f ( x ) = a x 3 + b x 2 + c x + d f(x)=ax^{3}+bx^{2}+cx+d , where a , b , c , d N a,b,c,d\in N . Given that,

f ( 1 ) = 10 f(1)=10
f ( 2 ) = 27 f(2)=27
f ( 3 ) = 60 f(3)=60
f ( 4 ) = 115 f(4)=115

Then find ( a × b × c × d ) + ( a + b + c + d ) (a \times b \times c \times d) + ( a + b + c + d ) .


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ikkyu San
Oct 18, 2015

f ( 1 ) a ( 1 ) 3 + b ( 1 ) 2 + c ( 1 ) + d a + b + c + d = 10 ( 1 ) f ( 2 ) a ( 2 ) 3 + b ( 2 ) 2 + c ( 2 ) + d 8 a + 4 b + 2 c + d = 27 ( 2 ) f ( 3 ) a ( 3 ) 3 + b ( 3 ) 2 + c ( 3 ) + d 27 a + 9 b + 3 c + d = 60 ( 3 ) f ( 4 ) a ( 4 ) 3 + b ( 4 ) 2 + c ( 4 ) + d 64 a + 16 b + 4 c + d = 115 ( 4 ) \begin{aligned}f(\color{magenta}1)\Rightarrow&\ \color{#D61F06}a(\color{magenta}1)^3+\color{#20A900}b(\color{magenta}1)^2+\color{#3D99F6}c(\color{magenta}1)+\color{teal}d\Rightarrow &\color{#D61F06}a+\color{#20A900}b+\color{#3D99F6}c+\color{teal}d&=\ 10&\Rightarrow(1)\\f(\color{#302B94}2)\Rightarrow&\ \color{#D61F06}a(\color{#302B94}2)^3+\color{#20A900}b(\color{#302B94}2)^2+\color{#3D99F6}c(\color{#302B94}2)+\color{teal}d\Rightarrow&8\color{#D61F06}a+4\color{#20A900}b+2\color{#3D99F6}c+\color{teal}d&=\ 27&\Rightarrow(2)\\f(\color{#EC7300}3)\Rightarrow&\ \color{#D61F06}a(\color{#EC7300}3)^3+\color{#20A900}b(\color{#EC7300}3)^2+\color{#3D99F6}c(\color{#EC7300}3)+\color{teal}d\Rightarrow&27\color{#D61F06}a+9\color{#20A900}b+3\color{#3D99F6}c+\color{teal}d&=\ 60&\Rightarrow(3)\\f(\color{#624F41}4)\Rightarrow&\ \color{#D61F06}a(\color{#624F41}4)^3+\color{#20A900}b(\color{#624F41}4)^2+\color{#3D99F6}c(\color{#624F41}4)+\color{teal}d\Rightarrow&64\color{#D61F06}a+16\color{#20A900}b+4\color{#3D99F6}c+\color{teal}d&=\ 115&\Rightarrow(4)\end{aligned}

( 2 ) ( 1 ) ; 7 a + 3 b + c = 17 ( 5 ) ( 3 ) ( 2 ) ; 19 a + 5 b + c = 33 ( 6 ) ( 4 ) ( 3 ) ; 37 a + 7 b + c = 55 ( 7 ) \begin{aligned}(2)-(1);\quad&7\color{#D61F06}a+3\color{#20A900}b+\color{#3D99F6}c&=\ 17&\Rightarrow(5)\\(3)-(2);\quad&19\color{#D61F06}a+5\color{#20A900}b+\color{#3D99F6}c&=\ 33&\Rightarrow(6)\\(4)-(3);\quad&37\color{#D61F06}a+7\color{#20A900}b+\color{#3D99F6}c&=\ 55&\Rightarrow(7)\end{aligned}

( 6 ) ( 5 ) ; 12 a + 2 b = 16 ( 8 ) ( 7 ) ( 6 ) ; 18 a + 2 b = 22 ( 9 ) \begin{aligned}(6)-(5);\quad&12\color{#D61F06}a+2\color{#20A900}b&=\ 16&\Rightarrow(8)\\(7)-(6);\quad&18\color{#D61F06}a+2\color{#20A900}b&=\ 22&\Rightarrow(9)\end{aligned}

( 9 ) ( 8 ) ; 6 a = 6 a = 1 \begin{aligned}(9)-(8);\quad&6\color{#D61F06}a&=\ 6&\Rightarrow\color{#D61F06}a=\color{#D61F06}1\end{aligned}

Instead a \color{#D61F06}a with 1 \color{#D61F06}1 in equation ( 8 ) ; (8);

12 ( 1 ) + 2 b = 16 2 b = 4 b = 2 \begin{aligned}12(\color{#D61F06}1)+2\color{#20A900}b&=\ 16\\2\color{#20A900}b&=\ 4\Rightarrow\color{#20A900}b=\color{#20A900}2\end{aligned}

Instead a \color{#D61F06}a with 1 \color{#D61F06}1 and b \color{#20A900}b with 2 \color{#20A900}2 in equation ( 5 ) ; (5);

7 ( 1 ) + 3 ( 2 ) + c = 17 13 + c = 17 c = 4 \begin{aligned}7(\color{#D61F06}1)+3(\color{#20A900}2)+\color{#3D99F6}c&=\ 17\\13+\color{#3D99F6}c&=\ 17\Rightarrow\color{#3D99F6}c=\color{#3D99F6}4\end{aligned}

Instead a \color{#D61F06}a with 1 \color{#D61F06}1 , b \color{#20A900}b with 2 \color{#20A900}2 and c \color{#3D99F6}c with 4 \color{#3D99F6}4 in equation ( 1 ) ; (1);

1 + 2 + 4 + d = 10 7 + d = 10 d = 3 \begin{aligned}\color{#D61F06}1+\color{#20A900}2+\color{#3D99F6}4+\color{teal}d&=\ 10\\7+\color{teal}d&=\ 10\Rightarrow \color{teal}d=\color{teal}3\end{aligned}

Thus, ( a b c d ) + ( a + b + c + d ) = ( 1 2 4 3 ) + 10 = 24 + 10 = 34 (\color{#D61F06}a\cdot\color{#20A900}b\cdot\color{#3D99F6}c\cdot\color{teal}d)+(\color{#D61F06}a+\color{#20A900}b+\color{#3D99F6}c+\color{teal}d)=(\color{#D61F06}1\cdot\color{#20A900}2\cdot\color{#3D99F6}4\cdot\color{teal}3)+10=24+10=\boxed{34}

Moderator note:

Good systematic way of solving the system of linear equations.

You could have reduced some steps by directly saying that 'a' must be equal to 1 from the 4th equation , and from 'a 'belongs to natural no.s

Harmanjot Singh - 5 years, 7 months ago

Totally same way

Department 8 - 5 years, 7 months ago
Chew-Seong Cheong
Oct 19, 2015

In matrix, the equation system is as follows:

( 1 3 1 2 1 1 2 3 2 2 2 1 3 3 3 2 3 1 4 3 4 2 4 1 ) ( a b c d ) = ( 10 27 60 115 ) ( 1 1 1 1 8 4 2 1 27 9 3 1 64 16 4 1 ) ( a b c d ) = ( 10 27 60 115 ) ( a b c d ) = ( 1 1 1 1 8 4 2 1 27 9 3 1 64 16 4 1 ) 1 ( 10 27 60 115 ) = 1 6 ( 1 3 3 1 9 24 21 6 26 57 42 11 24 36 24 6 ) ( 10 27 60 115 ) = ( 1 2 4 3 ) a b c d + a + b + c + d = 24 + 10 = 34 \begin{aligned} \begin{pmatrix} 1^3 & 1^2 & 1 & 1 \\ 2^3 & 2^2 & 2 & 1 \\ 3^3 & 3^2 & 3 & 1 \\ 4^3 & 4^2 & 4 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & = \begin{pmatrix} 10 \\ 27 \\ 60 \\ 115 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \\ 64 & 16 & 4 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & = \begin{pmatrix} 10 \\ 27 \\ 60 \\ 115 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \\ 64 & 16 & 4 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 10 \\ 27 \\ 60 \\ 115 \end{pmatrix} \\ & = \frac{1}{6} \begin{pmatrix}-1 & 3 & -3 & 1 \\ 9 & -24 & 21 & -6 \\ -26 & 57 & -42 & 11 \\ 24 & -36 & 24 & -6 \end{pmatrix} \begin{pmatrix} 10 \\ 27 \\ 60 \\ 115 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 3 \end{pmatrix} \\ & \\ \Rightarrow abcd + a+b+c+d & = 24 + 10 = \boxed{34} \end{aligned}

I used the following Excel spreadsheet to do the calculations.

There seems to be a typo.

The correct solution has c=4 and d=3

That does not affect the answer, though.

Dhaval Furia - 5 years, 7 months ago

Log in to reply

Thanks, you are right. I have edited the solution.

Chew-Seong Cheong - 5 years, 7 months ago
Ravi Dwivedi
Oct 21, 2015

We will use Lagrange interpolation discussed here

Let f ( x ) = p ( x 1 ) ( x 2 ) ( x 3 ) + q ( x 1 ) ( x 2 ) ( x 4 ) + r ( x 1 ) ( x 3 ) ( x 4 ) + s ( x 2 ) ( x 3 ) ( x 4 ) f(x)=p(x-1)(x-2)(x-3)+q(x-1)(x-2)(x-4)+r(x-1)(x-3)(x-4)+s(x-2)(x-3)(x-4)

Put f ( 1 ) = 10 f(1)=10 We get s = 5 3 s=\frac{-5}{3}

Similarly putting f ( 2 ) = 27 , f ( 3 ) = 60 , f ( 4 ) = 115 f(2)=27,f(3)=60,f(4)=115 yields respectively the values

r = 27 2 , q = 30 , p = 115 6 r=\frac{27}{2},q=-30,p=\frac{115}{6}

Put in f ( x ) f(x) to get

f ( x ) = 115 6 ( x 3 6 x 2 + 11 x 6 ) 30 ( x 3 7 x 2 + 14 x 8 ) + 27 2 ( x 3 8 x 2 + 19 x 12 ) 5 3 ( x 3 9 x 2 + 26 x 24 ) f(x)=\frac{115}{6}(x^3-6x^2+11x-6)-30(x^3-7x^2+14x-8)+\frac{27}{2}(x^3-8x^2+19x-12)-\frac{5}{3}(x^3-9x^2+26x-24)

f ( x ) = x 3 + 2 x 2 + 4 x + 3 f(x)=x^3+2x^2+4x+3

Clearly a = 1 , b = 2 , c = 4 , d = 3 a=1,b=2,c=4,d=3

a . b . c . d = 24 a.b.c.d = 24 and a + b + c + d = 10 a+b+c+d=10

A n s w e r = 24 + 10 = 34 Answer = 24+10 = \boxed{34}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...