Consecutive Triangle

1 8 ! + 1 9 ! = x 10 ! \dfrac{1}{{8!}} + \dfrac{1}{{9!}} = \dfrac{x}{{10!}}

Find the value of x x satisfying the equation above.


Notation: ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

1 8 ! + 1 9 ! = x 10 ! \Rightarrow \dfrac{1}{\color{#D61F06}{8!}}+\dfrac{1}{\color{#3D99F6}{9!}}=\dfrac{x}{\color{#20A900}{10!}}

10 ! 8 ! + 10 ! 9 ! = x \dfrac{\color{#20A900}{10!}}{\color{#D61F06}{8!}}+\dfrac{\color{#20A900}{10!}}{\color{#3D99F6}{9!}}=x

10 × 9 × 8 ! 8 ! + 10 × 9 ! 9 ! = x \dfrac{10×9×\color{#D61F06}{8!}}{\color{#D61F06}{8!}}+\dfrac{10×\color{#3D99F6}{9!}}{\color{#3D99F6}{9!}}=x

x = ( 10 × 9 ) + 10 = 100 x=(10×9)+10=\boxed{100}

Akash Patalwanshi
Apr 29, 2016

1 8 ! + 1 9 ! = 9 ! + 8 ! ( 8 ! ) ( 9 ! ) = 8 ! ( 9 + 1 ) ( 8 ! ) ( 9 ! ) = 10 9 ! \frac{1}{8!} + \frac{1}{9!}= \frac{9! + 8!}{(8!) ( 9!)} =\frac{8!(9+1)}{(8!) (9!)} =\frac{10}{9!}

So 10 9 ! = x 10 ! \frac{10}{9!} = \frac{x}{10!}

x = ( 10 ) ( 10 ! ) 9 ! →x = \frac{(10)(10!)}{9!}

x = 100 →x = \boxed{100}

Correction: It should be 1 8 ! + 1 9 ! \frac{1}{8!} + \frac{1}{9!} in the first step.

Yash Jain - 5 years, 1 month ago

Log in to reply

Thanks ! Edited!!

akash patalwanshi - 5 years, 1 month ago
Sam Bealing
Apr 27, 2016

Relevant wiki: Factorials

1 8 ! + 1 9 ! = 10 × 9 10 × 9 × 8 ! + 10 10 × 9 ! = 90 10 ! + 10 10 ! = 100 10 ! \dfrac{1}{8!}+\dfrac{1}{9!}=\dfrac{10 \times 9}{10 \times 9 \times 8!}+\dfrac{10}{10 \times 9!}=\dfrac{90}{10!}+\dfrac{10}{10!}=\dfrac{100}{10!}

x = 100 x=\boxed{100}

We multiply both the sides of the equation by 10 ! 10! . Then, we have:

10 ! 8 ! + 10 ! 9 ! = x \implies \frac{10!}{8!} + \frac{10!}{9!} = x

8 ! × 9 × 10 8 ! + 9 ! × 10 9 ! = x \implies \frac{8! \times 9 \times 10}{8!} + \frac{9! \times 10}{9!} = x

x = 90 + 10 \implies x=90+10

x = 100 \implies \boxed{x=100}

Couldn't get any better :3

There is one shortcut which is useful in competitive exams,

In general if a , b a,b and c c are three consecutive positive integers, then for

1 a ! + 1 b ! = x c ! \large \dfrac{1}{a!} + \dfrac{1}{b!} = \dfrac{x}{c!}

value of x x will be c 2 c^2 .

Yash Jain - 5 years, 1 month ago

Log in to reply

Yeah, we can do that, by making x x the subject of this formula.

Still, thanks. It would really benefit me in competitive exams.

Arkajyoti Banerjee - 5 years, 1 month ago

Log in to reply

Nice formula...I tried to prove and I succeed to prove.

Dharmendra Singh Hindustani - 4 years, 3 months ago

@Yash Jain Can you explain to me why the value of x x 1 a ! + 1 b ! = x c ! \frac { 1 } { a! } + \frac { 1 } { b! } = \frac { x } { c! } equals to c 2 c ^ { 2 } ?

. . - 3 months, 3 weeks ago

1 8 ! + 1 9 ! \frac {1}{8!} + \frac{1}{9!}

= = 9 9 ! + 1 9 ! \frac {9}{9!} + \frac{1}{9!}

= = 9 + 1 9 ! \frac {9 + 1}{9!}

= = 10 9 ! \frac {10}{9!}

= = 10 × 10 9 ! × 10 \frac {10 \times 10}{9! \times 10}

= = 100 10 ! \frac {100}{10!} = = x 10 ! \frac {x}{10!}

So x = 100 x =\boxed{100}

Vũ Nhật Huy
Dec 24, 2018

1 8 ! \frac{1}{8!} + 1 9 ! \frac{1}{9!} = x 10 ! \frac{x}{10!}

1 8 ! \frac{1}{8!} + 1 9 ! \frac{1}{9!} = x : 10!

x = ( 1 8 ! \frac{1}{8!} + 1 9 ! \frac{1}{9!} )*10!

x = 1 36288 \frac{1}{36288} *10!

x= 100

Fahim Saikat
Jul 9, 2017

1 8 ! + 1 9 ! = 9 + 1 9 ! = 10 9 ! = 100 10 ! = x 10 ! \frac{1}{8!}+\frac{1}{9!}=\frac{9+1}{9!}=\frac{10}{9!}=\frac{100}{10!}=\frac{x}{10!}

therefore , x = 100 \boxed{x=100}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...