Do you know where is this angle?

Geometry Level 1

If sin A = 3 5 \sin A = \dfrac 35 and 0 < A < 9 0 0^\circ < A < 90^\circ , find sin 4 A \sin 4A .

336 25 \frac{336}{25} 48 25 \frac{48}{25} 48 625 \frac{48}{625} 336 625 \frac{336}{625}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2018

sin A = 3 5 Given cos A = 1 sin 2 A = 1 9 25 = 4 5 sin 2 A = 2 sin A cos A = 2 × 3 5 × 4 5 = 24 25 cos 2 A = 1 sin 2 2 A = 1 576 625 = 7 25 sin 4 A = 2 sin 2 A cos 2 A = 2 × 24 25 × 7 25 = 336 625 \begin{aligned} \sin A & = \frac 35 & \small \color{#3D99F6} \text{Given} \\ \implies \cos A & = \sqrt{1-\sin^2 A} = \sqrt{1-\frac 9{25}} = \frac 45 \\ \sin 2A & = 2\sin A\cos A = 2\times \frac 35 \times \frac 45 = \frac {24}{25} \\ \cos 2A & = \sqrt{1-\sin^2 2A} = \sqrt{1-\frac {576}{625}} = \frac 7{25} \\ \implies \sin 4A & = 2\sin 2A\cos 2A = 2 \times \frac {24}{25}\times \frac 7{25} = \boxed{\dfrac {336}{625}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...