Do you know your ABCD's?

Algebra Level 1

Given that a 2 + b 2 = c 2 + d 2 = 85 a^2 + b^2 = c^2 + d^2 = 85 and a c b d = 40 , |ac - bd| = 40, find a d + b c |ad + bc| .


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Alan Yan
Oct 25, 2015

( a 2 + b 2 ) ( c 2 + d 2 ) = ( a c b d ) 2 + ( a d + b c ) 2 = 8 5 2 a d + b c 2 = 8 5 2 4 0 2 a d + b c = 75 \begin{aligned} (a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2 & = 85^2 \\ |ad + bc|^2 & = 85^2 - 40^2 \implies |ad + bc| = \boxed{75} \end{aligned}

Yep a simple way

Auguste Richards - 4 years ago

Bhramagupta's Identity

Hans Gabriel Daduya - 3 years, 5 months ago

Consider two complex numbers z 1 = ( a + i b ) z_1=(a+ib) and z 2 = ( c + i d ) z_2=(c+id) . Therefore, z 1 z 2 = ( a c b d ) + i ( a d + b c ) z_1z_2=(ac-bd)+i(ad+bc) .

In polar form z 1 z 2 = r e i θ z_1z_2=re^{i \theta} , where r = a 2 + b 2 c 2 + d 2 r=\sqrt{a^2+b^2}\sqrt{c^2+d^2} .

From the given data, r = 85 r=85 . Also, by definition, r 2 = ( a c b d ) 2 + ( a d + b c ) 2 r^2=(ac-bd)^2+(ad+bc)^2 , i.e.,

( a d + b c ) 2 = 8 5 2 4 0 2 = ( 85 + 40 ) ( 85 40 ) = 125 × 45 = 125 × 5 × 9 = ( 25 × 3 ) 2 = 7 5 2 (ad+bc)^2=85^2-40^2\\ =(85+40)(85-40)\\ =125 \times 45\\ =125 \times 5 \times 9\\ =(25 \times 3)^2\\ =75^2 .

Therefore a d + b c = 75 |ad+bc|=75 .

Sahil Sharma
Oct 29, 2015

A little observation and you'll find (a,b,c,d) as (6,7,9,2). So |ad+bc|= |6x2+7x9|= 75.

Do a, b, c and d HAVE to be integers?

Karan Pedja - 5 years, 7 months ago

Log in to reply

a + b i = c + d i = 5 2 ( 3 + 5 i ) a+bi=c+di=\sqrt{\frac{5}{\,2\,}} (3+5i)

Évariste Galois - 3 years, 6 months ago

A little observation gives (a,b,c,d) as (6,7,9,2) but there are 3 more different sets with the same values which the set (a,b,c,d) can take. (9,2,6,7), (2,9,7,6) & (7,6,2,9) . So each variable in the set can take all the four values (2,6,7,9) which implies that there is no fixed value for the variables. But |ad+bc| is always equal to 75 regardless of their value.

Yugesh Karnati - 4 years, 7 months ago

I think this is the best solution..:)

Brahmaprasad Raveendran - 5 years, 7 months ago
Harry Ray
Sep 27, 2016

Here's yet another way of solving this: since I've spent perhaps too much time doing linear algebra, these expressions looked like dot products and determinants. Consider the following matrix product: [ a b d c ] [ a d b c ] = [ a 2 + b 2 a d + b c a d + b c c 2 + d 2 ] . \begin{bmatrix} a & b \\ d & c \end{bmatrix} \begin{bmatrix} a & d \\ b & c \end{bmatrix} = \begin{bmatrix} a^2 + b^2 & ad + bc \\ ad + bc & c^2 + d^2 \end{bmatrix}. Using the fact that a 2 + b 2 = c 2 + d 2 = 85 a^2 + b^2 = c^2 + d^2 = 85 , letting x = a d + b c x = ad + bc , and taking the determinant of both sides, we have: a b d c a d b c = 85 x x 85 ( a c b d ) 2 = 8 5 2 x 2 x 2 = 5625 \begin{aligned} \begin{vmatrix} a & b \\ d & c \end{vmatrix} \begin{vmatrix} a & d \\ b & c \end{vmatrix} &= \begin{vmatrix} 85 & x \\ x & 85 \end{vmatrix} \\ (ac - bd)^2 &= 85^2 - x^2 \\ x^2 &= 5625 \end{aligned} Thus x = ± 75 x = \pm 75 , and therefore a d + b c = x = 75 |ad + bc| = |x| = \boxed{75} .

Stephen Safee
Sep 20, 2016

a 2 + b 2 = c 2 + d 2 = 85 a^2+b^2=c^2+d^2=85

c 2 = 85 d 2 c^2=85-d^2

d 2 = 85 c 2 d^2=85-c^2


a c b d = 40 |ac-bd|=40

( a c b d ) 2 = 4 0 2 (|ac-bd|)^2=40^2

a 2 c 2 + b 2 d 2 2 a b c d = 4 0 2 a^2c^2+b^2d^2-2abcd=40^2


a 2 ( 85 d 2 ) + b 2 ( 85 c 2 ) 2 a b c d = 4 0 2 a^2(85-d^2)+b^2(85-c^2)-2abcd=40^2

85 a 2 a 2 d 2 + 85 b 2 b 2 c 2 2 a b c d = 4 0 2 85a^2-a^2d^2+85b^2-b^2c^2-2abcd=40^2

85 a 2 + 85 b 2 ( a 2 d 2 + b 2 c 2 + 2 a b c d ) = 4 0 2 85a^2+85b^2-(a^2d^2+b^2c^2+2abcd)=40^2

85 ( a 2 + b 2 ) ( a 2 d 2 + b 2 c 2 + 2 a b c d ) = 4 0 2 85(a^2+b^2)-(a^2d^2+b^2c^2+2abcd)=40^2

85 ( 85 ) ( a 2 d 2 + b 2 c 2 + 2 a b c d ) = 4 0 2 85(85)-(a^2d^2+b^2c^2+2abcd)=40^2


( a 2 d 2 + b 2 c 2 + 2 a b c d ) = 8 5 2 4 0 2 (a^2d^2+b^2c^2+2abcd)=85^2-40^2

( a d + b c ) 2 = 7 5 2 (ad+bc)^2=75^2

a d + b c = ± 75 ad+bc=\pm75

a d + b c = 75 |ad+bc|=\boxed{75}

Sadasiva Panicker
Oct 29, 2015

a=6. b=7, c=9 and d=2, There fore, /ad +bc/ = 6x2 + 7x9 = 12 + 63 =75

Yuriy Kazakov
Apr 18, 2017

a = 85 cos t a=\sqrt{85}\cos {t} , b = 85 sin t b=\sqrt{85}\sin {t} , d = 85 cos s d=\sqrt{85}\cos {s} , c = 85 sin s c=\sqrt{85}\sin {s} , a c b d = 85 cos ( t + s ) ac-bd=85\cos {(t+s)} , a d + b c = 85 sin ( t + s ) ad+bc=85\sin {(t+s)} , c o s ( t + s ) = 40 85 cos {(t+s)}=\frac{40}{85} , a d + b c = 85 1 c o s ( t + s ) 2 = 75 ad+bc=85\sqrt{1-{cos {(t+s)}}^2}=75

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...