Do you like evaluating the angles of a Triangle?

Geometry Level 3

In a Δ A B C \Delta ABC , the altitude, the angle bisector and the median from A A divides the A \angle A into four equal angles. Find the value of B C \bigg| \angle B-\angle C \bigg| in degrees.

3 0 30^\circ 67. 5 67.5^\circ 4 5 45^\circ 6 0 60^\circ 22. 5 22.5^\circ 37. 5 37.5^\circ 7 5 75^\circ 1 5 15^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L e t A = 4 α . B = 90 α . C = 90 3 α . I n Δ A B F , A F S i n B = B F S i n 3 α A F C o s α = B C 2 S i n 3 α . . . . . ( ) I n Δ A F C , A F S i n C = F C S i n α A F C o s 3 α = B C 2 S i n α . . . . . ( ) f r o m ( ) a n d ( ) S i n 2 α = S i n 6 α . B u t S i n 45 = S i n ( 3 45 ) B C = 2 α = 45. Let~ \angle A= 4\alpha.~~~~~\therefore~\angle B=90-\alpha.~~~~~\angle C=90 - 3\alpha.\\ In~\Delta ABF, ~~\dfrac{AF}{SinB}=\dfrac{BF}{Sin3\alpha} ~~~~~\implies~\dfrac{AF}{Cos\alpha}=\dfrac{BC}{2*Sin3\alpha}.....(*)\\ In~\Delta AFC, ~~\dfrac{AF}{SinC}=\dfrac{FC}{Sin\alpha} ~~~~~\implies~\dfrac{AF}{Cos3\alpha}=\dfrac{BC}{2*Sin\alpha}.....(**)\\ \therefore~ from~(*)~and~(**) ~~Sin2\alpha=Sin6\alpha .\\ But~Sin45=Sin(3*45)~~~~\therefore~|\angle B- \angle C|=2\alpha=~~~~\Huge \color{#D61F06}{45}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...