Do you "neat" me?

Calculus Level pending

Find x = 0 d x y = 0 1 d y z = 0 x d z x e ( 2 x y 3 x y 5 y z ) = K \displaystyle \int_{x=0}^{\infty} dx \int_{y=0}^{1} dy \int_{z=0}^{x} dz x e^{\left (-2\dfrac{x}{y}-3xy-5yz \right )} =K .

Enter your answer as 1 K \displaystyle \dfrac{1}{K}

Bonus: Try generalise

x = 0 d x y = 0 1 d y z = 0 x d z x e ( A x y B x y C y z ) \displaystyle \int_{x=0}^{\infty} dx \int_{y=0}^{1} dy \int_{z=0}^{x} dz x e^{\left (-A\dfrac{x}{y}-Bxy-Cyz \right )}

For positive A,B and C.


The answer is 200.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Here is another way of doing it!!

Once we have done the z integral, then we are left with integrals of the form

x = 0 y = 0 1 x c y exp ( ( A x y + B x y ) ) d y d x \displaystyle \int_{x=0}^{\infty} \int_{y=0}^{1} \dfrac{-x}{cy} \exp{(-(A\dfrac{x}{y}+Bxy))} dydx

Knowing that the order of integration can be changed, thus

0 x exp ( A x ) d x = 1 A 2 \displaystyle \int_{0}^{\infty} x \exp{(-Ax)} dx=\dfrac{1}{A^{2}} So, we are left with

0 1 y ( B y 2 + A ) 2 d y = 1 2 A ( A + B ) \displaystyle \int_{0}^{1} \dfrac{y}{(By^{2}+A)^{2}} dy=\dfrac{1}{2A(A+B)} So,

x = 0 y = 0 1 z = 0 x x exp ( ( A x y + B x y + C y z ) ) d z d y d x = 1 2 A ( A + B ) ( A + B + C ) \displaystyle \int_{x=0}^{\infty} \int_{y=0}^{1} \int_{z=0}^{x} x \exp{(-(A\dfrac{x}{y}+Bxy+Cyz))} dzdydx =\boxed{ \dfrac{1}{2A(A+B)(A+B+C)}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...