Do you really love polynomials

Algebra Level 5

If the polynomial f ( x ) = 4 x 4 a x 3 + b x 2 c x + 5 f(x) = 4x^{4} - ax^{3} + bx^{2} -cx + 5 , where a , b , c R a,b,c \in \mathbb{R} has four positive real roots say r 1 r_{1} , r 2 r_{2} , r 3 r_{3} , and r 4 r_{4} such that r 1 2 + r 2 4 + r 3 5 + r 4 8 = 1 \dfrac{r_{1}}{2} + \dfrac{r_{2}}{4} + \dfrac{r_{3}}{5} + \dfrac{r_{4}}{8} = 1 , then find the value of a a .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hugh Sir
Mar 3, 2016

From Vieta's Formula and the given conditions, the problem can be restated as follow:

r 1 , r 2 , r 3 , r 4 r_1, r_2, r_3, r_4 are positive real numbers such that r 1 r 2 r 3 r 4 = 5 4 r_1r_2r_3r_4 = \frac{5}{4} and r 1 2 + r 2 4 + r 3 5 + r 4 8 = 1 \frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8} = 1 .

Find a = 4 ( r 1 + r 2 + r 3 + r 4 ) a = 4(r_1+r_2+r_3+r_4) .

Applying the AM-GM inequality, we have

r 1 2 + r 2 4 + r 3 5 + r 4 8 4 r 1 2 r 2 4 r 3 5 r 4 8 4 \frac{\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}}{4} \geq \sqrt[4]{\frac{r_1}{2}\cdot\frac{r_2}{4}\cdot\frac{r_3}{5}\cdot\frac{r_4}{8}}

Substituting the known values of the expressions, we have

1 4 5 4 ( 2 ) ( 4 ) ( 5 ) ( 8 ) 4 \frac{1}{4} \geq \sqrt[4]{\frac{\frac{5}{4}}{(2)(4)(5)(8)}}

1 4 1 2 8 4 \frac{1}{4} \geq \sqrt[4]{\frac{1}{2^8}}

1 4 1 4 \frac{1}{4} \geq \frac{1}{4}

The equality holds if and only if r 1 2 = r 2 4 = r 3 5 = r 4 8 \frac{r_1}{2} = \frac{r_2}{4} = \frac{r_3}{5} = \frac{r_4}{8} .

So r 1 2 = r 2 4 = r 3 5 = r 4 8 = 1 4 \frac{r_1}{2} = \frac{r_2}{4} = \frac{r_3}{5} = \frac{r_4}{8} = \frac{1}{4} .

r 1 = 1 2 , r 2 = 1 , r 3 = 5 4 , r 4 = 2 r_1 = \frac{1}{2}, r_2 = 1, r_3 = \frac{5}{4}, r_4 = 2 .

Hence, a = 4 ( r 1 + r 2 + r 3 + r 4 ) = 4 ( 1 2 + 1 + 5 4 + 2 ) = 19 a = 4(r_1+r_2+r_3+r_4) = 4(\frac{1}{2}+1+\frac{5}{4}+2) = 19 .

Same solution!!

Aakash Khandelwal - 5 years, 3 months ago

same solution...nice..(+1)!!!!

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...