Do you really need "contour" here? (2)

Calculus Level 4

cos x 1 + x 2 d x \large \int_{-\infty}^{\infty} \dfrac{\cos x}{1+x^{2}} \, dx

Find the value of the closed form of the above integral.
Give your answer to 3 decimal places.

Bonus:

  • Solve this question without using contour integration .

  • Generalise cos ( x ) a 2 + x 2 d x \displaystyle \int_{-\infty}^{\infty} \dfrac{\cos(x)}{a^{2}+x^{2}} dx , where a a is a constant.


The answer is 1.156.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jessica Wang
Dec 27, 2016

To save some effort, we can generalise it first.

Consider this integral: I = cos b x a 2 + x 2 d x . I=\int_{-\infty }^{\infty }\frac{\cos{bx}}{a^{2}+x^{2}}\: dx. Let u = 1 a 2 + x 2 , d v d x = cos b x , \text{Let }u=\frac{1}{a^{2}+x^{2}}\, ,\: \: \frac{dv}{dx}=\cos{bx}, d u d x = 2 x ( a 2 + x 2 ) 2 , v = sin b x b , \Rightarrow \frac{du}{dx}=-\frac{2x}{(a^{2}+x^{2})^{2}}\, ,\: \: v=\frac{\sin{bx}}{b}\, , Using Integration by Parts, giving \text{Using Integration by Parts, giving} I = [ sin b x a 2 + x 2 ] + 2 b x sin b x ( a 2 + x 2 ) 2 d x . I=\left [ \frac{\sin{bx}}{a^{2}+x^{2}} \right ]_{-\infty }^{\infty }+\frac{2}{b}\int_{-\infty }^{\infty }\frac{x\sin{bx}}{(a^{2}+x^{2})^{2}}\: dx. Let f ( x ) = sin b x a 2 + x 2 , then we have f ( x ) = f ( x ) , \text{Let }f(x)=\frac{\sin{bx}}{a^{2}+x^{2}}\, ,\: \: \text{then we have }f(x)=f(-x), Thus f ( x ) is an even function and [ sin b x a 2 + x 2 ] = 0. \text{Thus }f(x)\: \: \text{is an even function and }\left [ \frac{\sin{bx}}{a^{2}+x^{2}} \right ]_{-\infty }^{\infty }=0. I = 2 b x sin b x ( a 2 + x 2 ) 2 d x , \therefore I=\frac{2}{b}\int_{-\infty }^{\infty }\frac{x\sin{bx}}{(a^{2}+x^{2})^{2}}\: dx\, , b I = 2 x sin b x ( a 2 + x 2 ) 2 d x . [ 1 ] \Rightarrow bI=2\int_{-\infty }^{\infty }\frac{x\sin{bx}}{(a^{2}+x^{2})^{2}}\: dx.\; \; \; \; \; \; [1] Differentiate both sides with respect to b gives: \text{Differentiate both sides with respect to }b\text{ gives:} b d I d b + I = 2 x 2 cos b x ( a 2 + x 2 ) 2 d x = 2 ( cos b x a 2 + x 2 d x cos b x ( a 2 + x 2 ) 2 ) , b\, \frac{dI}{db}+I=2\int_{-\infty }^{\infty }\frac{x^{2}\cos{bx}}{(a^{2}+x^{2})^{2}}\, dx=2\left ( \int_{-\infty }^{\infty }\frac{\cos{bx}}{a^{2}+x^{2}}\: dx-\int_{-\infty }^{\infty }\frac{\cos{bx}}{(a^{2}+x^{2})^{2}} \right ), b d I d b + I = 2 I 2 cos b x ( a 2 + x 2 ) 2 , \Rightarrow b\, \frac{dI}{db}+I=2I-2\int_{-\infty }^{\infty }\frac{\cos{bx}}{(a^{2}+x^{2})^{2}}, b d I d b I = 2 cos b x ( a 2 + x 2 ) 2 . \Rightarrow b\, \frac{dI}{db}-I=2\int_{-\infty }^{\infty }\frac{\cos{bx}}{(a^{2}+x^{2})^{2}}. Differentiate both sides again with respect to b gives: \text{Differentiate both sides again with respect to }b\text{ gives:} b d 2 I d b 2 = 2 x sin b x ( a 2 + x 2 ) 2 . [ 2 ] b\, \frac{d^{2}I}{db^{2}}=2\int_{-\infty }^{\infty }\frac{x\sin{bx}}{(a^{2}+x^{2})^{2}}.\; \; \; \; \; \; [2] [ 1 ] [ 2 ] gives I d 2 I d b 2 = 0 I = A e a b + B e a b . [1] - [2]\text{ gives }I-\frac{d^{2}I}{db^{2}}=0\:\: \Rightarrow I=A e^{ab}+Be^{-ab}. Since lim b I = lim b 2 b x sin b x ( a 2 + x 2 ) 2 d x = 0 , we have A = 0. \text{Since }\lim_{b\rightarrow \infty }I=\lim_{b\rightarrow \infty }\frac{2}{b}\int_{-\infty }^{\infty }\frac{x\sin{bx}}{(a^{2}+x^{2})^{2}}\: dx=0,\text{ we have }A=0. Also since setting b = 0 gives A + B = 1 a 2 + x 2 d x = π a B = π a . \text{Also since setting }b=0\text{ gives }A+B=\int_{-\infty}^{\infty }\frac{1}{a^{2}+x^{2}}\, dx=\frac{\pi}{a}\: \: \Rightarrow B=\frac{\pi}{a}. Thus, I = π a e a b = π a e a b . \text{Thus, } I=\frac{\pi}{a}\, e^{-ab}=\boxed{\frac{\pi}{ae^{ab}}}\: .

Now, setting a = 1 a=1 and b = 1 b=1 gives us the answer to this particular problem, which is π e = 1.156 , \frac{\pi}{e}=\boxed{1.156}\: , to 3 significant figures.

(+1) Nice solution! I'd like to invite you to participate in the Brilliant Integration Contest Season 3 .

Ishan Singh - 4 years, 5 months ago
Mark Hennings
Dec 24, 2016

Since, assuming that a > 0 a > 0 e a t e i x t d t = 0 ( e ( a + i x ) t + e ( a i x ) t ) d t = 1 a + i x + 1 a i x = 2 a a 2 + x 2 \int_{-\infty}^\infty e^{-a|t|} e^{-ixt}\,dt \; = \; \int_0^\infty \left(e^{-(a+ix)t} + e^{-(a-ix)t}\right)\,dt \;=\; \frac{1}{a+ix} +\frac{1}{a-ix} \; = \; \frac{2a}{a^2 + x^2} for any x R x \in \mathbb{R} , the theory of Fourier transforms tells us that 1 2 π 2 a a 2 + x 2 e i x t d x = e a t t R \frac{1}{2\pi} \int_{-\infty}^\infty \frac{2a}{a^2 + x^2}e^{ixt}\,dx \; = \; e^{-a|t|} \hspace{2cm} t \in \mathbb{R} (the function e a t e^{-a|t|} is sufficiently well-behaved for this to be true pointwise, and not just in a Lebesgue-integral sense). Putting t = 1 t=1 , we see that cos x a 2 + x 2 d x = e i x a 2 + x 2 d x = π a e a \int_{-\infty}^\infty \frac{\cos x}{a^2 + x^2}\,dx \; = \; \int_{-\infty}^\infty \frac{e^{i x}}{a^2 + x^2}\,dx \; = \; \tfrac{\pi}{a}e^{-a} Thus the answer to the question is π e = 1.156 \tfrac{\pi}{e} = \boxed{1.156} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...