∫ − ∞ ∞ 1 + x 2 cos x d x
Find the value of the closed form of the above integral.
Give your answer to 3 decimal places.
Bonus:
Solve this question without using contour integration .
Generalise ∫ − ∞ ∞ a 2 + x 2 cos ( x ) d x , where a is a constant.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(+1) Nice solution! I'd like to invite you to participate in the Brilliant Integration Contest Season 3 .
Since, assuming that a > 0 ∫ − ∞ ∞ e − a ∣ t ∣ e − i x t d t = ∫ 0 ∞ ( e − ( a + i x ) t + e − ( a − i x ) t ) d t = a + i x 1 + a − i x 1 = a 2 + x 2 2 a for any x ∈ R , the theory of Fourier transforms tells us that 2 π 1 ∫ − ∞ ∞ a 2 + x 2 2 a e i x t d x = e − a ∣ t ∣ t ∈ R (the function e − a ∣ t ∣ is sufficiently well-behaved for this to be true pointwise, and not just in a Lebesgue-integral sense). Putting t = 1 , we see that ∫ − ∞ ∞ a 2 + x 2 cos x d x = ∫ − ∞ ∞ a 2 + x 2 e i x d x = a π e − a Thus the answer to the question is e π = 1 . 1 5 6 .
Problem Loading...
Note Loading...
Set Loading...
To save some effort, we can generalise it first.
Consider this integral: I = ∫ − ∞ ∞ a 2 + x 2 cos b x d x . Let u = a 2 + x 2 1 , d x d v = cos b x , ⇒ d x d u = − ( a 2 + x 2 ) 2 2 x , v = b sin b x , Using Integration by Parts, giving I = [ a 2 + x 2 sin b x ] − ∞ ∞ + b 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x sin b x d x . Let f ( x ) = a 2 + x 2 sin b x , then we have f ( x ) = f ( − x ) , Thus f ( x ) is an even function and [ a 2 + x 2 sin b x ] − ∞ ∞ = 0 . ∴ I = b 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x sin b x d x , ⇒ b I = 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x sin b x d x . [ 1 ] Differentiate both sides with respect to b gives: b d b d I + I = 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x 2 cos b x d x = 2 ( ∫ − ∞ ∞ a 2 + x 2 cos b x d x − ∫ − ∞ ∞ ( a 2 + x 2 ) 2 cos b x ) , ⇒ b d b d I + I = 2 I − 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 cos b x , ⇒ b d b d I − I = 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 cos b x . Differentiate both sides again with respect to b gives: b d b 2 d 2 I = 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x sin b x . [ 2 ] [ 1 ] − [ 2 ] gives I − d b 2 d 2 I = 0 ⇒ I = A e a b + B e − a b . Since b → ∞ lim I = b → ∞ lim b 2 ∫ − ∞ ∞ ( a 2 + x 2 ) 2 x sin b x d x = 0 , we have A = 0 . Also since setting b = 0 gives A + B = ∫ − ∞ ∞ a 2 + x 2 1 d x = a π ⇒ B = a π . Thus, I = a π e − a b = a e a b π .
Now, setting a = 1 and b = 1 gives us the answer to this particular problem, which is e π = 1 . 1 5 6 , to 3 significant figures.