Do you really need to?

Algebra Level 2

n = 1 ( 2 1 0 2 n 1 + 3 1 0 2 n ) = ? \sum_{n=1}^\infty \left(\frac 2{10^{2n-1}} + \frac 3{10^{2n}} \right) = \ ?

23 99 \frac{23}{99} 1 1 Undefined 17 99 \frac{17}{99} 32 99 \frac{32}{99}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since the series converges, we can calculate the sum as follows:

S = n = 1 ( 2 1 0 2 n 1 + 3 1 0 2 n ) = 2 10 + 3 1 0 2 + 2 1 0 3 + 3 1 0 4 + 2 1 0 5 + 3 1 0 6 + 10 S = 2 + 3 10 + 2 1 0 2 + 3 1 0 3 + 2 1 0 4 + 3 1 0 5 + 9 S = 2 + 1 10 1 1 0 2 + 1 1 0 3 1 1 0 4 + 1 1 0 5 90 S = 20 + 1 1 10 + 1 1 0 2 1 1 0 3 + 1 1 0 4 99 S = 23 S = 23 99 \begin{aligned} S & = \sum_{n=1}^\infty \left(\frac 2{10^{2n-1}} + \frac 3{10^{2n}} \right) \\ & = \frac 2{10} + \frac 3{10^2} + \frac 2{10^3} + \frac 3{10^4} + \frac 2{10^5} + \frac 3{10^6} + \cdots \\ 10S & = 2 + \frac 3{10} + \frac 2{10^2} + \frac 3{10^3} + \frac 2{10^4} + \frac 3{10^5} + \cdots \\ 9S & = 2 + \frac 1{10} - \frac 1{10^2} + \frac 1{10^3} - \frac 1{10^4} + \frac 1{10^5} - \cdots \\ 90S & = 20 + 1 - \frac 1{10} + \frac 1{10^2} - \frac 1{10^3} + \frac 1{10^4} - \cdots \\ 99S & = 23 \\ \implies S & = \boxed{\frac {23}{99}} \end{aligned}

Ethan Mandelez
Dec 1, 2020

Here is one way of doing it:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...