Do you remember summer '09?

Calculus Level 4

lim n ( n ! ( m n ) n ) 1 / n \displaystyle \lim_{n \to \infty}\left(\dfrac{n!}{(mn)^n}\right)^{1/n}

Let m m be a constant positive number. Evaluate the limit above for integer n n .

Clarification : e e denotes Euler's number , e 2.71828 e \approx 2.71828 .

1 e m \dfrac{1}{em} e m em e m \dfrac{e}{m} e m e e^{me} m e \dfrac{m}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parth Lohomi
Jun 3, 2016

We have L = lim n ( n ! ( m n ) n ) 1 / n = lim n 1 m ( 1 n 2 n . . . n n ) 1 / n \text{L}=\displaystyle \lim_{n \to \infty}\left(\dfrac{n!}{(mn)^n}\right)^{1/n}=\displaystyle \lim_{n \to \infty}\dfrac{1}{m}\left(\dfrac{1}{n}\dfrac{2}{n}...\dfrac{n}{n}\right)^{1/n}

ln ( L ) = lim n [ ln ( 1 m ) + 1 n ( ln ( 1 n ) + ln ( 2 n ) + ln ( 3 n ) + . . . . + ln ( n n ) ) ] = ln ( m ) + lim n 1 n r = 1 n ln ( r n ) \ln(L)=\displaystyle \lim_{n \to \infty}\left[\ln(\dfrac{1}{m})+\dfrac{1}{n}\left(\ln(\dfrac{1}{n})+\ln(\dfrac{2}{n})+\ln(\dfrac{3}{n})+....+\ln(\dfrac{n}{n})\right)\right]=-\ln(m)+\displaystyle \lim_{n \to \infty}\dfrac{1}{n}\displaystyle\sum_{r=1}^n \ln\left(\dfrac{r}{n}\right)

= ln ( m ) + 0 1 ln ( x ) d x = ln ( m ) + [ x ( ln ( x ) 1 ) ] 0 1 = ln ( m ) 1 = ln ( 1 e m ) =-\ln(m)+\displaystyle\int_0^1 \ln(x)\ dx=-\ln(m)+\left[x(\ln(x)-1)\right]_0^1=-\ln(m)-1=\ln(\frac{1}{em})

Nice solution +1!. Typo in 1st line? on exponents.

Mayank Chaturvedi - 5 years ago

Log in to reply

Thanks.I have edited the first line.

Parth Lohomi - 5 years ago

By stirling approximation the above expression reduces to :

L r e q = L t n > ( ( 2 π n ) 1 / 2 n ) / e m L_{req}= Lt_{n-> \infty} ((2\pi n )^{1/2n})/em .

Let L = L t n > ( 2 π n ) 1 / 2 n L^{'} = Lt{n->\infty}(2\pi n )^{1/2n}

L = e L t n > ( l n ( 2 π n ) / 2 n L{'}=e^{Lt_{n-> \infty} (ln(2\pi n)/2n} .

Thus by applying L' Hospital rule,

L = 1 L^{'}=1 .

Therefore L r e q = 1 / e m L_{req} = \boxed{1/em} .

Nice solution. Did the same way.

Used Stirling's approximation too!

Atomsky Jahid - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...