Do you remember the formula?

Calculus Level 3

k = 1 2 cos ( 3 π 2 k + 1 ) sin ( π 2 k + 1 ) = ? \large \sum_{k=1}^{\infty } 2\cos \left(\dfrac{3\pi}{2^{k+1}}\right) \sin \left( \dfrac{\pi}{2^{k+1}} \right) = \, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Recio
Jul 23, 2016

Let S n = k = 1 n 2 cos 3 π 2 k + 1 sin π 2 k + 1 \displaystyle S_n= \sum _{k=1}^{n} 2\cos \frac{3\pi}{2^{k+1}} \sin \frac{\pi}{2^{k+1}} .

From Product-to-Sum Formula,

2 cos 3 π 2 k + 1 sin π 2 k + 1 = 2 1 2 [ sin ( 3 π 2 k + 1 + π 2 k + 1 ) sin ( 3 π 2 k + 1 π 2 k + 1 ) ] = sin 4 π 2 k + 1 sin 2 π 2 k + 1 = sin π 2 k 1 sin π 2 k \displaystyle2\cos \frac{3\pi}{2^{k+1}} \sin \frac{\pi}{2^{k+1}} =2 \cdot \frac{1}{2} [\sin(\frac{3\pi}{2^{k+1}} + \frac{\pi}{2^{k+1}}) \sin(\frac{3\pi}{2^{k+1}} - \frac{\pi}{2^{k+1}})] =\sin \frac{4\pi}{2^{k+1}} - \sin\frac{2\pi}{2^{k+1}} =\sin \frac{\pi}{2^{k-1}} - \sin\frac{\pi}{2^k}

Therefore,

S n = k = 1 n ( sin π 2 2 k 1 sin π 2 k ) = ( sin π sin π 2 ) + ( sin π 2 sin π 2 2 ) + + ( sin π 2 n 1 sin π 2 n ) = sin π sin π 2 n = sin π 2 n \displaystyle S_n=\sum _{k=1}^{n} (\sin\frac{\pi}{2^{2k-1}}-\sin\frac{\pi}{2^k}) =(\sin\pi -\sin\frac{\pi}{2}) +(\sin\frac{\pi}{2}-\sin \frac{\pi}{2^2}) +\cdots + (\sin\frac{\pi}{2^{n-1}}-\sin\frac{\pi}{2^n}) =\sin \pi-\sin \frac{\pi}{2^n} =-\sin\frac{\pi}{2^n}

Thus,

lim n S n = sin 0 = 0 \displaystyle\lim_{n\to\infty} S_n=-\sin 0=0

Therefore, k = 1 2 cos 3 π 2 k + 1 sin π 2 k + 1 = 0 \displaystyle\sum _{k=1}^{\infty} 2\cos \frac{3\pi}{2^{k+1}} \sin \frac{\pi}{2^{k+1}} =0

@Mark Recio , you don't need to close every function with "\ (", just use one, so you don't need to repeat "\ displaystyle". Chick edit and you can check what I have edited. You can use "\ cdots" for three dots or just enter three dots. Since sine is a function use a blackslash like other functions.

Chew-Seong Cheong - 4 years, 10 months ago

Ok sir, thank you for editing my errors. I'll keep your tips in mind. Latex still confuses me by a bit. XD

Mark Recio - 4 years, 10 months ago

Log in to reply

You can click Toggle Latex in the top right corner pull-down menu to see the LaTex codes. You can also place your mouse cursor on top of the formulas to see the LaTex codes.

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...