Do you understand division?

Number Theory Level pending

Find the sum of all the ordered pairs ( a , b ) (a,b) of positive integers that satisfy

{ b 2 8 a 2 14 b 56 a + 2 a b a 7 a + b b 2 2 2 a b 16 a b + 6 b + 4 b 2 + 24 a 2 b + 3 b 2 \begin{cases} b^2 \mid \dfrac{8a^2-14b-56a+2ab}{a-7} \\ a+b \mid \dfrac{b^2}{2}-2a-b \\ \dfrac{16ab+6b+4b^2+24a}{2b+3} \mid b^2 \end{cases}


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rick B
Feb 3, 2015

Notice that

8 a 2 14 b 56 a + 2 a b a 7 = ( 8 a + 2 b ) ( a 7 ) a 7 = 8 a + 2 b \dfrac{8a^2-14b-56a+2ab}{a-7} = \dfrac{(8a+2b)(a-7)}{a-7} = 8a+2b

and

16 a b + 6 b + 4 b 2 + 24 a 2 b + 3 = ( 8 a + 2 b ) ( 2 b + 3 ) 2 b + 3 = 8 a + 2 b \dfrac{16ab+6b+4b^2+24a}{2b+3} = \dfrac{(8a+2b)(2b+3)}{2b+3} = 8a+2b

So the system is equivalent to

{ b 2 8 a + 2 b a + b b 2 2 2 a b 8 a + 2 b b 2 \begin{cases} b^2 \mid 8a+2b \\ a+b \mid \dfrac{b^2}{2}-2a-b \\ 8a+2b \mid b^2 \end{cases}

b 2 8 a + 2 b 8 a + 2 b b 2 b^2 \mid 8a+2b \implies 8a+2b \geq b^2 (I)

8 a + 2 b b 2 8 a + 2 b b 2 8a+2b \mid b^2 \implies 8a+2b \leq b^2 (II)

For both (I) and (II) to be valid, we need b 2 = 8 a + 2 b b^2 = 8a+2b

Substituting b 2 b^2 in the second statement:

a + b 8 a + 2 b 2 2 a b a + b 4 a + b 2 a b a + b 2 a a+b \mid \dfrac{8a+2b}{2}-2a-b \implies a+b \mid 4a+b-2a-b \implies a+b \mid 2a

We have 2 a a + b < 2 a a = 2 2 a a + b = 1 2 a = a + b a = b \dfrac{2a}{a+b} < \dfrac{2a}{a} = 2 \implies \dfrac{2a}{a+b} = 1 \implies 2a = a+b \implies a = b

Knowing that a = b a =b , the first statement becomes

a 2 10 a a 2 10 a a^2 \mid 10a \implies a^2 \leq 10a (III)

and the third statement becomes

10 a a 2 a 2 10 a 10a \mid a^2 \implies a^2 \geq 10a (IV)

For both (III) and (IV) to be valid, we need a 2 = 10 a a = 10 = b a^2 = 10a \implies a = 10 = b

The only solution is ( 10 , 10 ) (10,10) , so the answer is 10 + 10 = 20 10+10 = \boxed{20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...