Does Graphing Work Here?

Algebra Level 2

Given that:

{ x 4 + x 2 y 2 + y 4 = 700 x 2 + x y + y 2 = 35 \begin{cases} x^4+x^2y^2+y^4= 700 \\ x^2+xy+y^2= 35\end{cases}

What is 2 x y 2xy to the nearest whole number?

25 20 15 30 35

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hana Wehbi
Feb 7, 2021

x 4 + x 2 y 2 + y 4 = ( x 2 + x y + y 2 ) 35 ( x 2 x y + y 2 ) = 700 x 2 x y + y 2 = 700 35 = 20 x^4+x^2y^2+y^4= \underbrace{(x^2+xy+y^2)}_{35}(x^2-xy+y^2) =700\implies x^2-xy+y^2 =\frac{700}{35}= 20 .

{ x 2 + x y + y 2 = 35 x 2 x y + y 2 = 20 \begin{cases} x^2+xy+y^2 = 35 \\ - \\\ x^2-xy+y^2 = 20 \end{cases}

2 x y = 35 20 = 15 \implies 2xy = 35-20=15

Did you want us to graph this quartic function?

Jason Gomez - 4 months ago

Log in to reply

It’s another optional solution.

Hana Wehbi - 4 months ago
Chris Lewis
Feb 9, 2021

( x 2 + x y + y 2 ) 2 ( x 4 + x 2 y 2 + y 4 ) = ( x 4 + 2 x 3 y + 3 x 2 y 2 + 2 x y 3 + y 4 ) ( x 4 + x 2 y 2 + y 4 ) = 2 x 3 y + 2 x 2 y 2 + 2 x y 3 = 2 x y ( x 2 + x y + y 2 ) \begin{aligned} {\color{#D61F06}\left(x^2+xy+y^2\right)^2}-{\color{#3D99F6}\left(x^4+x^2 y^2 + y^4\right)}&={\color{#D61F06}\left(x^4+2x^3 y + 3x^2 y^2 + 2xy^3 + y^4\right)}-{\color{#3D99F6}\left(x^4+x^2 y^2 + y^4\right)} \\ &=2x^3 y + 2x^2 y^2 + 2xy^3 \\ &=2xy \left(x^2+xy+y^2\right)\end{aligned}

Substituting in the given values, 3 5 2 700 = 2 x y 35 {\color{#D61F06}35^2}-{\color{#3D99F6}700}=2xy \cdot 35

So 2 x y = 3 5 2 700 35 = 35 20 = 15 2xy=\frac{35^2-700}{35}=35-20=\boxed{15}

Thank you for sharing your solution.

Hana Wehbi - 4 months ago
Iliya Hristov
May 4, 2021

( x 2 y 2 ) 2 = ( x + y ) 2 ( x y ) 2 = ( 35 + x y ) ( 35 3 x y ) = 700 3 x 2 y 2 2 x y = 15 \left(x^2-y^2\right)^2=(x+y)^2(x-y)^2=(35+xy)(35-3xy)=700-3x^2y^2\;\;\Rightarrow\;\;2xy=\boxed{15}

Bonus: Find the sum of all x x solutions of the system.
Solution: x + y = ± 35 + 15 2 + x y = ± 35 3 15 2 x = ± 42.5 ± 12.5 2 x = 0 x+y=\pm\sqrt{35+\frac{15}{2}}\;\;\;\;\;\;+\;\;\;\;\;\;x-y=\pm\sqrt{35-3*\frac{15}{2}}\;\;\;\Rightarrow\;\;\;x=\frac{\pm\sqrt{42.5}\pm\sqrt{12.5}}{2}\;\;\;\Rightarrow\;\;\;\sum{x}=\boxed{0}

Iliya Hristov - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...