Does it converge or does it not?

Calculus Level 4

Evaluate the following: π i + π 2 2 ! + π 3 i 3 ! π 4 4 ! π 5 i 5 ! + π 6 6 ! + . . . -\pi i + \dfrac{\pi^2}{2!} + \dfrac{\pi^3i}{3!} - \dfrac{\pi^4}{4!} - \dfrac{\pi^5 i}{5!} + \dfrac{\pi^6}{6!} +...

The pattern continues as: + , + , , , + , + , . . . +,+,-,-,+,+,...

Notation: i = 1 i=\sqrt{-1} denotes the imaginary unit .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

Let S S be the given expression. Then

e π i = 1 + π i + π 2 i 2 2 ! + π 3 i 3 3 ! + π 4 i 4 4 ! + π 5 i 3 5 ! + π 6 i 6 6 ! + By Maclaurin series = 1 + π i π 2 2 ! π 3 i 3 ! + π 4 4 ! + π 5 i 5 ! π 6 6 ! + = 1 S S = 1 e π i = 1 ( cos π + i sin π ) = 2 By Euler’s formula: e θ i = cos θ + i sin θ \begin{aligned} e^{\pi i} & = 1 + \pi i + \frac {\pi^2 i^2}{2!} + \frac {\pi^3 i^3}{3!} + \frac {\pi^4 i^4}{4!} + \frac {\pi^5 i^3}{5!} + \frac {\pi^6 i^6}{6!} + \cdots & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = 1 + \pi i - \frac {\pi^2}{2!} - \frac {\pi^3 i}{3!} + \frac {\pi^4}{4!} + \frac {\pi^5 i}{5!} - \frac {\pi^6}{6!} + \cdots \\ & = 1 - S \\ \implies S & = 1-e^{\pi i} = 1 - (\cos \pi + i\sin \pi) = \boxed{2} & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i\sin \theta \end{aligned}

Charan Sankar
Jul 8, 2018

You will get the answer 2 by using the taylor series of e^x replacing the x with pi*i and then once again replacing it with -1. Although furthur simplification would be required.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...