Does it cycle? Maybe...

Find the last two digits of 201 6 2016 × 201 7 2017 × 201 8 2018 2016^{2016}\times 2017^{2017}\times2018^{2018} .


The answer is 68.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brandon Low
Aug 22, 2018

We notice that the last two digits of 201 6 n 2016^{n} , 201 7 n 2017^{n} and 201 8 n 2018^{n} each have their respective cycles:

  • Last two digits of 201 6 n 2016^{n} : 16 , 56 , 96 , 36 , 76 , 16 , 56...... \boxed{16,56,96,36,76,16,56......}
    Notice that the last two digits 201 6 n 2016^{n} has a fixed five-number cycle 16 , 56 , 96 , 36 , 76 \boxed{16,56,96,36,76} before repeating itself again. Therefore, we can deduce that the last two digits of 201 6 2016 2016^{2016} is 16, which is the first number in the cycle, because 2016 1 ( m o d 5 ) 2016\equiv 1(mod5) .

Similarly for 201 7 2017 2017^{2017} and 201 8 2018 2018^{2018} , we can use the same method we used in 201 6 2016 2016^{2016} .

  • Last two digits of 201 7 n 2017^{n} : 17 , 89 , 13 , 21 , 57 , 69 , 73 , 41 , 97 , 49 , 33 , 61 , 37 , 29 , 93 , 81 , 77 , 09 , 53 , 01 , 17 , . . . . . . \boxed{17,89,13,21,57,69,73,41,97,49,33,61,37,29,93,81,77,09,53,01,17,......} The last two digits of 201 7 n 2017^{n} is has a fixed 20-number cycle 17 , 89 , 13 , 21 , 57 , 69 , 73 , 41 , 97 , 49 , 33 , 61 , 37 , 29 , 93 , 81 , 77 , 09 , 53 , 01 \boxed{17,89,13,21,57,69,73,41,97,49,33,61,37,29,93,81,77,09,53,01} , so we know that the last two digits of 201 7 n 2017^{n} is the 17th number in the cycle, which is 77 because 2016 17 ( m o d 20 ) 2016\equiv 17(mod20) .

  • Last two digits of 201 8 n 2018^{n} : 18 , 24 , 32 , 76 , 68 , 24 , 32 , . . . . . . \boxed{18,24,32,76,68,24,32,......} The last two digits of 201 8 n 2018^{n} is has a fixed 4-number cycle 24 , 32 , 76 , 68 \boxed{24,32,76,68} after the first term 18, so we know that the last two digits of 201 7 n 2017^{n} is the 1st number in the cycle, which is 24 because ( 2018 1 ) 1 ( m o d 4 ) (2018-1)\equiv 1(mod4) .

Since we have the last two digits of 201 6 n 2016^{n} , 201 7 n 2017^{n} and 201 8 n 2018^{n} which are 16,77 and 24 respectively, so we can find the last two digits of their product, which is the last two digits of 16 × 77 × 24 16\times77\times24 , which is 68 \boxed{68} .

Chew-Seong Cheong
Aug 23, 2018

Let the number given be N N . We need to find N m o d 100 N \bmod 100 .

N 201 6 2016 × 201 7 2017 × 201 8 2018 (mod 100) 1 6 2016 × 1 7 2017 × 1 8 2018 (mod 100) \begin{aligned} N & \equiv 2016^{2016} \times 2017^{2017} \times 2018^{2018} \text{ (mod 100)} \\ & \equiv 16^{2016} \times 17^{2017} \times 18^{2018} \text{ (mod 100)} \end{aligned}

Since gcd ( 16 , 18 , 100 ) 1 \gcd (16, 18, 100) \ne 1 , we have to consider the factors 4 and 25 of 100 separately using Chinese remainder theorem.

For factor 4 : 1 6 2016 0 (mod 4) 16^{2016} \equiv 0 \text{ (mod 4)} and 1 8 2018 ( 16 + 2 ) 2018 0 (mod 4) 18^{2018} \equiv (16+2)^{2018} \equiv 0 \text{ (mod 4)}

For factor 25 :

1 6 2016 1 6 2016 m o d ϕ ( 25 ) (mod 25) Since gcd ( 16 , 25 ) = 1 , Euler theorem applies. 1 6 2016 m o d 20 (mod 25) Euler totient function ϕ ( 25 ) = 20 1 6 16 (mod 25) 2 64 m o d 20 (mod 25) Apply Euler theorem again. 2 4 16 (mod 25) Since 1 6 2016 0 (mod 4) 16 (mod 100) \begin{aligned} 16^{2016} & \equiv 16^{2016 \bmod \color{#3D99F6} \phi (25)} \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }\gcd(16,25) = 1 \text{, Euler theorem applies.} \\ & \equiv 16^{2016 \bmod \color{#3D99F6} 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Euler totient function }\phi (25) = 20 \\ & \equiv 16^{16} \text{ (mod 25)} \\ & \equiv 2^{64 \bmod 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Apply Euler theorem again.} \\ & \equiv 2^4 \equiv 16 \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }16^{2016} \equiv 0 \text{ (mod 4)} \\ & \equiv 16 \text{ (mod 100)} \end{aligned}

1 8 2018 1 8 2018 m o d ϕ ( 25 ) (mod 25) Since gcd ( 18 , 25 ) = 1 , Euler theorem applies. 1 8 2018 m o d 20 (mod 25) Euler totient function ϕ ( 25 ) = 20 1 8 18 (mod 25) 2 18 3 36 m o d 20 (mod 25) Apply Euler theorem again. 2 10 2 8 3 16 (mod 25) 24 × 6 × 3 × ( 25 + 2 ) 5 (mod 25) ( 1 ) × 6 × 3 × 7 (mod 25) 1 24 (mod 25) Since 1 8 2018 0 (mod 4) 24 (mod 100) \begin{aligned} 18^{2018} & \equiv 18^{2018 \bmod \color{#3D99F6} \phi (25)} \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }\gcd(18,25) = 1 \text{, Euler theorem applies.} \\ & \equiv 18^{2018 \bmod \color{#3D99F6} 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Euler totient function }\phi (25) = 20 \\ & \equiv 18^{18} \text{ (mod 25)} \\ & \equiv 2^{18}3^{36 \bmod 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{Apply Euler theorem again.} \\ & \equiv 2^{10}2^83^{16} \text{ (mod 25)} \\ & \equiv 24 \times 6 \times 3 \times (25+2)^5 \text{ (mod 25)} \\ & \equiv (-1) \times 6 \times 3 \times 7 \text{ (mod 25)} \\ & \equiv -1 \equiv 24 \text{ (mod 25)} & \small \color{#3D99F6} \text{Since }18^{2018} \equiv 0 \text{ (mod 4)} \\ & \equiv 24 \text{ (mod 100)} \end{aligned}

Now consider

1 7 2017 1 7 2017 m o d ϕ ( 100 ) (mod 100) Since gcd ( 17 , 100 ) = 1 , Euler theorem applies. 1 7 2017 m o d 40 (mod 100) Euler totient function ϕ ( 100 ) = 40 1 7 17 (mod 100) ( 20 3 ) 15 1 7 2 (mod 100) 3 15 89 (mod 100) 3 ( 10 1 ) 7 11 (mod 100) 3 × 69 × 11 (mod 100) 77 (mod 100) \begin{aligned} 17^{2017} & \equiv 17^{2017 \bmod \color{#3D99F6} \phi (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since }\gcd(17,100) = 1 \text{, Euler theorem applies.} \\ & \equiv 17^{2017 \bmod \color{#3D99F6} 40} \text{ (mod 100)} & \small \color{#3D99F6} \text{Euler totient function }\phi (100) = 40 \\ & \equiv 17^{17} \text{ (mod 100)} \\ & \equiv (20-3)^{15} 17^2 \text{ (mod 100)} \\ & \equiv -3^{15} 89 \text{ (mod 100)} \\ & \equiv 3 (10-1)^7 11 \text{ (mod 100)} \\ & \equiv 3\times 69 \times 11 \text{ (mod 100)} \\ & \equiv 77 \text{ (mod 100)} \end{aligned}

Therefore, N 16 × 77 × 24 32 × 24 68 (mod 100) N \equiv 16 \times 77 \times 24 \equiv 32 \times 24 \equiv \boxed{68} \text{ (mod 100)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...