Does it even converge?

Calculus Level 3

0 x 10 e x 3 d x \int _{ 0 }^{ \infty }{ \sqrt { \frac { { x }^{ 10 } }{ { e }^{ { x }^{ 3 } } } } dx }

If the integral above is of the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers, write your answer as a + b a + b .

inspiration


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Gamma Function

I = 0 x 10 e x 3 d x = 0 x 5 e x 3 2 d x Let t = x 3 2 , d t = 3 2 x 2 d x = 4 3 0 t 2 1 e t d t = 4 3 Γ ( 2 ) where Γ ( ) denotes the gamma function. = 4 ( 1 ! ) 3 = 4 3 \begin{aligned} I & = \int_0^\infty \sqrt{\frac {x^{10}}{e^{x^3}}} dx \\ & = \int_0^\infty x^5 e^{-\frac {x^3}2} dx & \small \color{#3D99F6} \text{Let }t = \frac {x^3}2, \ dt = \frac 32 x^2 \ dx \\ & = \frac 43 \int_0^\infty t^{2-1} e^{-t} \ dt \\ & = \frac 43 \Gamma (2) & \small \color{#3D99F6} \text{where } \Gamma (\cdot) \text{ denotes the gamma function.} \\ & = \frac {4(1!)}3 \\ & = \frac 43 \end{aligned}

a + b = 4 + 3 = 7 \implies a+b = 4+3 = \boxed{7}

Beautiful elegant solution!

Alex Delhumeau - 4 years ago
Alex Delhumeau
Jun 5, 2017

You can also do this integral the conventional way if you did not see the clever Gamma Function substitution .

Start by simplifying the integrand x 10 e x 3 = x 5 e x 3 . \sqrt { \frac { { x }^{ 10 } }{ { e }^{ { x }^{ 3 } } } } = \frac{x^5}{\sqrt{e^{x^3}}}. Then make the substitution k = x 3 , d k = 3 x 2 d x k = x^3, dk = 3x^2 dx . The integral becomes now 1 3 0 k e k 2 d k \frac{1}{3} \int _{ 0 }^{ \infty }{ k * e^{-\frac{k}{2}} dk}

Using integration by parts with u = k , d v = e k 2 d u = d k , v = 2 e k 2 u = k, dv = e^{-\frac{k}{2}} \Rightarrow du = dk, v = -2e^{-\frac{k}{2}} , we subsequently have 1 3 ( 2 k e k 2 ( k = 0 ) 0 2 k e k 2 d k ) = \frac{1}{3}(-2ke^{-\frac{k}{2}}|_{(k=0→\infty)} - \int _{ 0 }^{ \infty }{ -2ke^{-\frac{k}{2}} dk}) = 1 3 ( 2 k e k 2 4 e k 2 ) ( k = 0 ) \frac{1}{3} ( -2ke^{-\frac{k}{2}} - 4e^{-\frac{k}{2}} )|_{(k=0→\infty)}

All terms cancel except for 1 3 ( ( 4 ) ) = 4 3 \frac{1}{3}(-(-4)) = \frac{4}{3} , and 4 + 3 = 7 4+3=\boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...