Plain Substitution Right? Wrong!

Calculus Level 4

0 2 π e cos θ cos ( sin θ ) d θ = ? \large \int _{ 0 }^{ 2\pi }{ { e }^{ \cos { \theta } } } \ \cos(\sin\theta ) \ d\theta = \ ?

π \pi 2 π 2\pi e 2 π 1 { e }^{ 2\pi }-1 None of these choices e 1 e-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shishir G.
Apr 5, 2015

e c o s θ c o s ( s i n θ ) = R e [ e c o s θ ( c o s ( s i n θ ) + i s i n ( s i n θ ) ) ] w h e r e R e [ . ] i m p l i e s r e a l p a r t o f a c o m p l e x n u m b e r . = R e [ e c o s θ . e i s i n θ ] = R e [ e c o s θ + i s i n θ ] = R e [ e e i θ ] = > 0 2 π e c o s θ c o s ( s i n θ ) d θ = R e [ 0 2 π e e i θ d θ ] = R e [ 0 2 π ( 1 + e i θ 1 ! + e 2 i θ 2 ! + e 3 i θ 3 ! + . . . . . . . . . ) d θ ] = R e [ [ θ + e i θ i . 1 ! + e 2 i θ 2 i . 2 ! + e 3 i θ 3 i . 3 ! + . . . . . . . . . . ] 2 π 0 ] = R e [ [ θ i . e i θ 1 ! i . e 2 i θ 2.2 ! i . e 3 i θ 3.3 ! . . . . . . . . . ] 2 π 0 ] = [ θ ] 2 π 0 = 2 π { \quad \quad e }^{ cos\theta }cos(sin\theta )\\ =\quad Re\left[ { e }^{ cos\theta }(cos(sin\theta )+isin(sin\theta )) \right] \\ \quad \quad where\quad Re[.]\quad implies\quad real\quad part\quad of\quad a\quad complex\quad number.\\ =\quad Re\left[ { e }^{ cos\theta }{ .e }^{ isin\theta } \right] \\ =\quad Re\left[ { e }^{ cos\theta +isin\theta } \right] \\ =\quad Re\left[ { e }^{ { e }^{ i\theta } } \right] \\ \\ =>\int _{ 0 }^{ 2\pi }{ { e }^{ cos\theta } } cos(sin\theta )d\theta \\ =\quad Re\left[ \int _{ 0 }^{ 2\pi }{ { e }^{ { e }^{ i\theta } } } d\theta \right] \\ =\quad Re\left[ \int _{ 0 }^{ 2\pi }{ (1+\frac { { e }^{ i\theta } }{ 1! } } +\frac { { e }^{ 2i\theta } }{ 2! } +\frac { { e }^{ 3i\theta } }{ 3! } +.........\infty )d\theta \right] \\ =\quad Re\left[ \left[ \theta +\frac { { e }^{ i\theta } }{ i.1! } +\frac { { e }^{ 2i\theta } }{ 2i.2! } +\frac { { e }^{ 3i\theta } }{ 3i.3! } +..........\infty \right] \begin{matrix} 2\pi \\ 0 \end{matrix} \right] \\ =\quad Re\left[ \left[ \theta -\frac { i.{ e }^{ i\theta } }{ 1! } -\frac { i.{ e }^{ 2i\theta } }{ 2.2! } -\frac { i.{ e }^{ 3i\theta } }{ 3.3! } -.........\infty \right] \begin{matrix} 2\pi \\ 0 \end{matrix} \right] \\ =\quad \left[ \theta \right] \begin{matrix} 2\pi \\ 0 \end{matrix}\\ =\quad 2\pi

You can also solve the integral of e^(e^(ix)) by contour integration and residues. Let z = e^(ix) and the rest takes care of itself.

Nick Hill - 5 years, 7 months ago

nice question ...........is there any other way to solve it like using substitution??

pratik das - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...