Does it need substitution?

Calculus Level 5

Find the value of 0 1 ln ( 1 x + 1 + x ) d x . \large \displaystyle \int_{0}^1 \ln\left( \sqrt{1-x}+\sqrt{1+x} \right)dx.

Note: Answer after rounding off up to 3 decimal places.


The answer is 0.632.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Pi Han Goh
Nov 28, 2014

1 x + 1 + x \large \sqrt{1-x} + \sqrt{1+x}

= ( 1 x + 1 + x ) 2 \large = \sqrt{ \left ( \sqrt{1-x} + \sqrt{1+x} \right )^2 }

= ( 2 + 2 1 x 2 ) 1 2 \large = \left ( 2 + 2 \sqrt{1-x^2} \right )^{ \frac {1}{2} }

The integral becomes

1 2 0 1 ln ( 2 + 2 1 x 2 ) d x \displaystyle \frac {1}{2} \int_0^1 \ln \left ( 2 + 2 \sqrt{1-x^2} \right ) \mathrm{d}x

Use properties of logarithm ln ( A B ) = ln ( A ) + ln ( B ) \ln(AB) = \ln(A) + \ln(B) for A , B > 0 A, B>0

= 1 2 0 1 ln 2 d x + 1 2 0 1 ln ( 1 + 1 x 2 ) d x \displaystyle = \frac {1}{2} \int_0^1 \ln 2 \space \mathrm{d}x + \frac {1}{2} \int_0^1 \ln \left (1 + \sqrt{1-x^2} \right ) \mathrm{d}x

= 1 2 ln 2 + 1 2 0 1 ln ( 1 + 1 x 2 ) d x \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \int_0^1 \ln \left (1 + \sqrt{1-x^2} \right ) \mathrm{d}x

Let x = sin θ d x = cos θ d θ x = \sin \theta \Rightarrow \mathrm{d}x = \cos \theta \space \mathrm{d} \theta

= 1 2 ln 2 + 1 2 0 π / 2 ln ( 1 + cos θ ) cos θ d θ \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \int_0^{\pi /2} \ln (1 + \cos \theta) \cos \theta \space \mathrm{d} \theta

Integrate by parts,

Let u = ln ( 1 + cos θ ) , d v = cos θ d θ u = \ln(1 + \cos \theta) , \mathrm{d}v = \cos \theta \space \mathrm{d} \theta

d u = sin θ 1 + cos θ d θ , v = sin θ \Rightarrow \mathrm{d}u = - \frac {- \sin \theta}{1 + \cos \theta} \mathrm{d} \theta, v = \sin \theta

With u d v = u v v d u \displaystyle \int u \mathrm{d}v = uv - \int v \mathrm{d}u

Apply the limits and simplify, we get

= 1 2 ln 2 + 1 2 0 π / 2 sin 2 θ 1 + cos θ d θ \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \int_0^{\pi /2} \frac { \sin^2 \theta }{1 + \cos \theta } \space \mathrm{d} \theta

= 1 2 ln 2 + 1 2 0 π / 2 1 cos 2 θ 1 + cos θ d θ \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \int_0^{\pi /2} \frac { 1 - \cos^2 \theta }{1 + \cos \theta } \space \mathrm{d} \theta

= 1 2 ln 2 + 1 2 0 π / 2 ( 1 cos θ ) d θ \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \int_0^{\pi /2} (1 - \cos \theta ) \space \mathrm{d} \theta

= 1 2 ln 2 + 1 2 ( π 2 1 ) = 2 ln 2 + π 2 4 \displaystyle = \frac {1}{2} \ln 2 + \frac {1}{2} \left ( \frac { \pi}{2} - 1 \right ) = \LARGE \boxed{ \frac {2\ln 2 + \pi -2}{4} }

Another approach

x = c o s 2 a x= cos2a

π 4 π 2 l o g ( 2 ( 2 s i n ( π 4 + a ) ) d a \displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(\sqrt{2}(\sqrt{2}sin(\frac{\pi}{4} + a))da

π 4 π 2 l o g ( 2 ) d a + π 4 π 2 l o g ( s i n ( π a ) ) d a \displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(2)da + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(sin(\pi - a))da [ f ( x ) = f ( a x ) f(x) = f(a-x) ]

π 4 π 2 l o g ( 2 ) d a + π 4 π 2 l o g ( s i n ( a ) ) d a \displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(2)da + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(sin( a))da

= 0.632 = 0.632

sandeep Rathod - 6 years, 6 months ago
Souryajit Roy
Nov 29, 2014

Let I = l o g ( 1 x + 1 + x ) d x I=\int{log(\sqrt{1-x}+\sqrt{1+x})dx}

Let u = l o g ( 1 x + 1 + x ) u=log(\sqrt{1-x}+\sqrt{1+x}) and d v = d x dv=dx i.e, v = x v=x

Then, d u = 1 1 x + 1 + x ( 1 2 1 x + 1 2 1 + x ) d x = 1 2 1 x 2 1 x 1 x 2 du=\frac{1}{\sqrt{1-x}+\sqrt{1+x}}(-\frac{1}{2\sqrt{1-x}}+\frac{1}{2\sqrt{1+x}})dx=\frac{1}{2}\frac{\sqrt{1-x^{2}}-1}{x\sqrt{1-x^{2}}} (Simplifying)

Now, Applying Integration by parts,

I = u v v d u I=uv-\int{vdu} = x l o g ( 1 x + 1 + x ) 1 2 x 1 x 2 1 x 1 x 2 =xlog(\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2}\int{x\frac{\sqrt{1-x^{2}}-1}{x\sqrt{1-x^{2}}}} = x l o g ( 1 x + 1 + x ) 1 2 d x + 1 2 1 1 x 2 d x = x l o g ( 1 x + 1 + x ) 1 2 x + 1 2 s i n 1 x + C =xlog(\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2}\int{dx}+\frac{1}{2}\int{\frac{1}{\sqrt{1-x^{2}}}dx}=xlog(\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2}x+\frac{1}{2}sin^{-1}x+C where C is constant

Hence, 0 1 l o g ( 1 x + 1 + x ) d x \int_{0}^{1}{log(\sqrt{1-x}+\sqrt{1+x})dx} = l o g 2 1 2 + 1 2 s i n 1 1 0. l o g 2 + 1 2 × 0 1 2 s i n 1 0 =log\sqrt{2}-\frac{1}{2}+\frac{1}{2}sin^{-1}1-0.log2+\frac{1}{2}\times0-\frac{1}{2}sin^{-1}0 = l o g 2 1 2 + π 4 =log\sqrt{2}-\frac{1}{2}+\frac{π}{4} = 0.63197175 = 0.632 =0.63197175=0.632

So the answer to the question is SUBSTITUTION IS NOT NECESSARY

Parth Lohomi
Nov 28, 2014

Clerarly Speaking I used Substitution

\displaystyle\int (log( ( 1 x ) \sqrt(1-x) + ( 1 + x ) \sqrt(1+x) ) d x dx

after applying substitution and by part integration many times we get (sorry I am too lazy can't handle too much laTeX here so directly going to the last expression)

1 2 \frac{1}{2} (- x x - l o g ( x ) log(-x) + l o g ( 1 ( ( x + 1 ) log(1-(\sqrt(x+1) ))- l o g ( ( ( 1 x ) log((\sqrt(1-x) - ( 1 + x ) \sqrt(1+x) + 2 2 ) - l o g ( ( x + 1 ) ) + 1 ) + 2 ( x + 1 ) ( l o g ( 1 x log(\sqrt(x+1))+1)+2(x+1)(log(\sqrt1-x + ( 1 + x ) + ( l o g ( ( 1 x ) ) + ( ( 1 + x ) ) + 2 ) + 2 ( s i n 1 \sqrt(1+x)+(log(\sqrt(1-x))+(\sqrt(1+x))+2)+2(sin^{-1} . ( x + 1 ) ( 2 ) \frac{\sqrt(x+1)}{(\sqrt2)} -1)

On limition It from 0 0 to 1 1 we get 631972.... \boxed{631972....}

I = 0 1 ln ( 1 x + 1 + x ) d x By integration by parts = x ln ( 1 x + 1 + x ) 0 1 0 1 x 2 ( 1 1 + x 1 1 x ) 1 x + 1 + x d x = ln 2 2 + 0 1 ( 1 + x 1 x ) 2 4 1 x 2 d x = ln 2 2 + 0 1 2 2 1 x 2 4 1 x 2 d x = ln 2 2 + 1 2 0 1 1 1 x 2 d x 1 2 0 1 d x = ln 2 2 + 1 2 sin 1 x 0 1 1 2 x 0 1 = ln 2 2 + π 4 1 2 0.632 \begin{aligned} I & = \int_0^1 \ln (\sqrt{1-x} + \sqrt{1+x}) \ dx \quad \quad \small \color{#3D99F6}{\text{By integration by parts}} \\ & = x \ln (\sqrt{1-x} + \sqrt{1+x}) \bigg|_0^1 - \int_0^1 \frac {\frac x2\left(\frac 1{\sqrt{1+x}} - \frac 1{\sqrt{1-x}} \right)}{\sqrt{1-x} + \sqrt{1+x}} \ dx \\ & = \frac {\ln 2}2 + \int_0^1 \frac {(\sqrt{1+x} - \sqrt{1-x})^2}{4\sqrt{1-x^2}} \ dx \\ & = \frac {\ln 2}2 + \int_0^1 \frac {2- 2 \sqrt{1-x^2}}{4\sqrt{1-x^2}} \ dx \\ & = \frac {\ln 2}2 + \frac 12 \int_0^1 \frac 1{\sqrt{1-x^2}} \ dx - \frac 12 \int_0^1 \ dx \\ & = \frac {\ln 2}2 + \frac 12 \sin^{-1} x \bigg|_0^1 - \frac 12 x \bigg|_0^1 \\ & = \frac {\ln 2}2 + \frac \pi 4 - \frac 12 \\ & \approx \boxed{0.632} \end{aligned}

Prakhar Bindal
Oct 4, 2016

I Used the substituion x = cos(2y) and used integration by parts

Mas Mus
Mar 30, 2015

Let p = 1 + x + 1 x p=\sqrt{1+x}+\sqrt{1-x} , so we have x = 1 2 4 p 2 p 4 x=\frac{1}{2}\sqrt{4p^2-p^4} and

d x = 8 p 4 p 3 4 4 p 2 p 4 d p \large\mathrm{d}x=\frac{8p-4p^3}{4\sqrt{4p^2-p^4}}\mathrm{d}p

The integral becomes

I = 2 2 8 p 4 p 3 4 4 p 2 p 4 log p d p = 1 2 2 2 log p d ( 4 p 2 p 4 ) \displaystyle I=-\int_{\sqrt{2}}^2 \frac{8p-4p^3}{4\sqrt{4p^2-p^4}} \log p \mathrm{d}p = -\frac{1}{2}\int_{\sqrt{2}}^2\log p \mathrm{d}\left(\sqrt{4p^2-p^4}\right)

Using integral by parts:

Let u = log p , d v = d ( 4 p 2 p 4 ) u=\log p, dv=d\left(\sqrt{4p^2-p^4}\right)

d u = 1 p , v = 4 p 2 p 4 = p 4 p 2 \Rightarrow \mathrm{d}u=\frac{1}{p}, v=\sqrt{4p^2-p^4}=p\sqrt{4-p^2}

We get,

I = 1 2 ( 4 p 2 p 4 log p 2 2 4 p 2 d p ) = 1 2 ( 4 p 2 p 4 log p ( p 4 p 2 2 + 2 sin 1 p 2 ) ) = 1 2 4 p 2 p 4 ( 1 2 log p ) + sin 1 p 2 \begin{aligned}I&=-\frac{1}{2} \left(\sqrt{4p^2-p^4} \log p -\displaystyle \int_{\sqrt{2}}^2\sqrt{4-p^2} \mathrm{d}p \right)\\ &=-\frac{1}{2} \left(\sqrt{4p^2-p^4} \log p-\left(\frac{p\sqrt{4-p^2}}{2}+2\sin^{-1}\frac{p}{2}\right)\right) \\ &=\frac{1}{2}\sqrt{4p^2-p^4}\left(\frac{1}{2}-\log p\right)+\sin^{-1}\frac{p}{2}\end{aligned}

Now, apply the limits:

I = π 2 ( 1 2 1 2 log 2 + π 4 ) = π 2 + log 4 4 = 0.632 \large I=\frac{\pi}{2}-\left(\frac{1}{2}-\frac{1}{2}\log2+\frac{\pi}{4}\right)=\frac{\pi-2+\log4}{4}=\boxed{0.632}

Vishal Sharma
Dec 4, 2014

Let's do it without substitution.It's very easy.It just takes 3 steps. Take ln(sqrt(1−x)+sqrt(1+x)) as first function and 1 as second function.As we know that it breaks the integral into two integrals,the first one is already calculated as integration of 1 is x and for the second integral rationalize the denominator and it will automatically convert into a very simple integral. It just takes 3 steps.

Kunal Gupta
Dec 1, 2014

Another substitution is: x= cost; we get ln(sqrt(2)[ sin t/2 + cost/2]) after using:f(x )=f(a+b-x) we get: ln(2cos t/2)cos t dt after IBP: (1/2)ln(2) + [ integral( 0 to pi/2(sin^2x/2)dx] which equals: ln 2 2 + π 4 1 2 \dfrac { \ln{2} }{ 2 } +\frac { \pi }{ 4 } -\frac { 1 }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...