Find the value of ∫ 0 1 ln ( 1 − x + 1 + x ) d x .
Note: Answer after rounding off up to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Another approach
x = c o s 2 a
∫ 4 π 2 π l o g ( 2 ( 2 s i n ( 4 π + a ) ) d a
∫ 4 π 2 π l o g ( 2 ) d a + ∫ 4 π 2 π l o g ( s i n ( π − a ) ) d a [ f ( x ) = f ( a − x ) ]
∫ 4 π 2 π l o g ( 2 ) d a + ∫ 4 π 2 π l o g ( s i n ( a ) ) d a
= 0 . 6 3 2
Let I = ∫ l o g ( 1 − x + 1 + x ) d x
Let u = l o g ( 1 − x + 1 + x ) and d v = d x i.e, v = x
Then, d u = 1 − x + 1 + x 1 ( − 2 1 − x 1 + 2 1 + x 1 ) d x = 2 1 x 1 − x 2 1 − x 2 − 1 (Simplifying)
Now, Applying Integration by parts,
I = u v − ∫ v d u = x l o g ( 1 − x + 1 + x ) − 2 1 ∫ x x 1 − x 2 1 − x 2 − 1 = x l o g ( 1 − x + 1 + x ) − 2 1 ∫ d x + 2 1 ∫ 1 − x 2 1 d x = x l o g ( 1 − x + 1 + x ) − 2 1 x + 2 1 s i n − 1 x + C where C is constant
Hence, ∫ 0 1 l o g ( 1 − x + 1 + x ) d x = l o g 2 − 2 1 + 2 1 s i n − 1 1 − 0 . l o g 2 + 2 1 × 0 − 2 1 s i n − 1 0 = l o g 2 − 2 1 + 4 π = 0 . 6 3 1 9 7 1 7 5 = 0 . 6 3 2
So the answer to the question is SUBSTITUTION IS NOT NECESSARY
Clerarly Speaking I used Substitution
∫ (log( ( 1 − x ) + ( 1 + x ) ) d x
after applying substitution and by part integration many times we get (sorry I am too lazy can't handle too much laTeX here so directly going to the last expression)
2 1 (- x - l o g ( − x ) + l o g ( 1 − ( ( x + 1 ) ))- l o g ( ( ( 1 − x ) - ( 1 + x ) + 2 ) - l o g ( ( x + 1 ) ) + 1 ) + 2 ( x + 1 ) ( l o g ( 1 − x + ( 1 + x ) + ( l o g ( ( 1 − x ) ) + ( ( 1 + x ) ) + 2 ) + 2 ( s i n − 1 . ( 2 ) ( x + 1 ) -1)
On limition It from 0 to 1 we get 6 3 1 9 7 2 . . . .
I = ∫ 0 1 ln ( 1 − x + 1 + x ) d x By integration by parts = x ln ( 1 − x + 1 + x ) ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 1 − x + 1 + x 2 x ( 1 + x 1 − 1 − x 1 ) d x = 2 ln 2 + ∫ 0 1 4 1 − x 2 ( 1 + x − 1 − x ) 2 d x = 2 ln 2 + ∫ 0 1 4 1 − x 2 2 − 2 1 − x 2 d x = 2 ln 2 + 2 1 ∫ 0 1 1 − x 2 1 d x − 2 1 ∫ 0 1 d x = 2 ln 2 + 2 1 sin − 1 x ∣ ∣ ∣ ∣ 0 1 − 2 1 x ∣ ∣ ∣ ∣ 0 1 = 2 ln 2 + 4 π − 2 1 ≈ 0 . 6 3 2
I Used the substituion x = cos(2y) and used integration by parts
Let p = 1 + x + 1 − x , so we have x = 2 1 4 p 2 − p 4 and
d x = 4 4 p 2 − p 4 8 p − 4 p 3 d p
The integral becomes
I = − ∫ 2 2 4 4 p 2 − p 4 8 p − 4 p 3 lo g p d p = − 2 1 ∫ 2 2 lo g p d ( 4 p 2 − p 4 )
Using integral by parts:
Let u = lo g p , d v = d ( 4 p 2 − p 4 )
⇒ d u = p 1 , v = 4 p 2 − p 4 = p 4 − p 2
We get,
I = − 2 1 ( 4 p 2 − p 4 lo g p − ∫ 2 2 4 − p 2 d p ) = − 2 1 ( 4 p 2 − p 4 lo g p − ( 2 p 4 − p 2 + 2 sin − 1 2 p ) ) = 2 1 4 p 2 − p 4 ( 2 1 − lo g p ) + sin − 1 2 p
Now, apply the limits:
I = 2 π − ( 2 1 − 2 1 lo g 2 + 4 π ) = 4 π − 2 + lo g 4 = 0 . 6 3 2
Let's do it without substitution.It's very easy.It just takes 3 steps. Take ln(sqrt(1−x)+sqrt(1+x)) as first function and 1 as second function.As we know that it breaks the integral into two integrals,the first one is already calculated as integration of 1 is x and for the second integral rationalize the denominator and it will automatically convert into a very simple integral. It just takes 3 steps.
Another substitution is: x= cost; we get ln(sqrt(2)[ sin t/2 + cost/2]) after using:f(x )=f(a+b-x) we get: ln(2cos t/2)cos t dt after IBP: (1/2)ln(2) + [ integral( 0 to pi/2(sin^2x/2)dx] which equals: 2 ln 2 + 4 π − 2 1
Problem Loading...
Note Loading...
Set Loading...
1 − x + 1 + x
= ( 1 − x + 1 + x ) 2
= ( 2 + 2 1 − x 2 ) 2 1
The integral becomes
2 1 ∫ 0 1 ln ( 2 + 2 1 − x 2 ) d x
Use properties of logarithm ln ( A B ) = ln ( A ) + ln ( B ) for A , B > 0
= 2 1 ∫ 0 1 ln 2 d x + 2 1 ∫ 0 1 ln ( 1 + 1 − x 2 ) d x
= 2 1 ln 2 + 2 1 ∫ 0 1 ln ( 1 + 1 − x 2 ) d x
Let x = sin θ ⇒ d x = cos θ d θ
= 2 1 ln 2 + 2 1 ∫ 0 π / 2 ln ( 1 + cos θ ) cos θ d θ
Integrate by parts,
Let u = ln ( 1 + cos θ ) , d v = cos θ d θ
⇒ d u = − 1 + cos θ − sin θ d θ , v = sin θ
With ∫ u d v = u v − ∫ v d u
Apply the limits and simplify, we get
= 2 1 ln 2 + 2 1 ∫ 0 π / 2 1 + cos θ sin 2 θ d θ
= 2 1 ln 2 + 2 1 ∫ 0 π / 2 1 + cos θ 1 − cos 2 θ d θ
= 2 1 ln 2 + 2 1 ∫ 0 π / 2 ( 1 − cos θ ) d θ
= 2 1 ln 2 + 2 1 ( 2 π − 1 ) = 4 2 ln 2 + π − 2