Does Law of Cosines work?

Geometry Level 3

If α + β + γ = π \alpha + \beta + \gamma = \pi , then the maximum value of cos α + cos β + cos γ \cos \alpha + \cos \beta + \cos \gamma is...


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ariel Gershon
Dec 28, 2014

Let's use the identity that c o s ( α ) + c o s ( β ) = 2 c o s ( α + β 2 ) c o s ( α β 2 ) cos(\alpha) + cos(\beta) = 2cos\left(\dfrac{\alpha+\beta}{2}\right)cos\left(\dfrac{\alpha-\beta}{2}\right) .

Further, we can rewrite c o s ( γ ) = c o s ( π α β ) = c o s ( α + β ) = 2 c o s 2 ( α + β 2 ) + 1 cos(\gamma) = cos(\pi - \alpha - \beta) = -cos(\alpha + \beta) = -2cos^2\left(\dfrac{\alpha+\beta}{2}\right)+1

Now let x = c o s ( α + β 2 ) x = cos\left(\dfrac{\alpha+\beta}{2}\right) and y = c o s ( α β 2 ) y = cos\left(\dfrac{\alpha-\beta}{2}\right) .

Then the expression that we are trying to maximize becomes 2 x y 2 x 2 + 1 2xy - 2x^2 + 1 , such that 1 x , y 1 -1 \le x,y \le 1 .

This new function can be rewritten as 2 ( x y 2 ) 2 + 1 + y 2 2 -2\left(x-\dfrac{y}{2}\right)^2+1+\dfrac{y^2}{2}

Now 2 ( x y 2 ) 2 0 -2\left(x-\dfrac{y}{2}\right)^2 \le 0 and y 2 2 1 2 \dfrac{y^2}{2} \le \dfrac{1}{2} .

Hence 2 x y 2 x 2 + 1 3 2 2xy - 2x^2 + 1 \le \boxed{\dfrac{3}{2}}

Note that this value is achieved when α = β = γ = π 3 \alpha = \beta = \gamma = \dfrac{\pi}{3} .

Luis Meneses
Jun 3, 2015

Using trigonometric identities:

cos α + cos β + cos γ = \cos\alpha+\cos\beta+\cos\gamma=

= 2 cos ( α + β 2 ) cos ( α β 2 ) cos ( α + β ) =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)-\cos\left(\alpha+\beta\right)

= 2 cos ( α + β 2 ) cos ( α β 2 ) + 1 2 cos 2 ( α + β 2 ) =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)+1-2\cos^2\left(\frac{\alpha+\beta}{2}\right)

= 1 + 2 cos ( α + β 2 ) [ cos ( α β 2 ) cos ( α + β 2 ) ] =1+2\cos\left(\frac{\alpha+\beta}{2}\right)\left[\cos\left(\frac{\alpha-\beta}{2}\right)-\cos\left(\frac{\alpha+\beta}{2}\right)\right]

= 1 + 4 sin α 2 sin β 2 sin γ 2 . =1+4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}.

We know that α 2 \frac{\alpha}{2} , β 2 \frac{\beta}{2} , and γ 2 \frac{\gamma}{2} are acute angles, for α + β + γ = π \alpha+\beta+\gamma=\pi . Thus, sin α 2 \sin\frac{\alpha}{2} , sin β 2 \sin\frac{\beta}{2} , and sin γ 2 \sin\frac{\gamma}{2} are nonnegative real numbers, and, by the AM-GM inequality, the maximum of sin α 2 sin β 2 sin γ 2 \sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2} holds if and only if sin α 2 = sin β 2 = sin γ 2 \sin\frac{\alpha}{2}=\sin\frac{\beta}{2}=\sin\frac{\gamma}{2} , or, better, α = β = γ \alpha=\beta=\gamma .

Hence, the maximum value of cos α + cos β + cos γ \cos\alpha+\cos\beta+\cos\gamma is 3 cos π 3 = 3 2 3\cos\frac{\pi}{3}=\boxed{\frac{3}{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...