Does symmetry works always ?

Algebra Level pending

( x 2 + 1 ) ( y 2 + 1 ) + 25 = 10 x + 10 y \displaystyle{({ x }^{ 2 }+1)({ y }^{ 2 }+1)+25=10x+10y}

Find value of x 2 + y 2 \displaystyle{\\ { x }^{ 2 }+{ y }^{ 2 }}

This is not original


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
Apr 15, 2015

We expand to:

x 2 y 2 + x 2 + y 2 + 1 + 25 10 ( x + y ) = 0 x^2y^2+x^2+y^2+1+25-10(x+y)=0

( x y ) 2 + 1 2 ( x y ) + 2 ( x y ) + x 2 + y 2 10 ( x + y ) + 25 = 0 (xy)^2+1-2(xy)+2(xy)+x^2+y^2-10(x+y)+25=0

( x y 1 ) 2 + ( x + y ) 2 10 ( x + y ) + 25 = 0 (xy-1)^2+(x+y)^2-10(x+y)+25=0

( x y 1 ) 2 + ( x + y 5 ) 2 = 0. (xy-1)^2+(x+y-5)^2=0.

This only holds if x y = 1 xy=1 and x + y = 5 x+y=5 , hence x 2 + y 2 = ( x + y ) 2 2 x y = 25 2 = 23 x^2+y^2=(x+y)^2-2xy=25-2=\boxed{23} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...