∫ 2 / 3 + ∞ x 1 lo g ( cos ( x 1 ) ) d x Determine whether the improper integral above converges, diverges or does not exists.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integrand function f ( x ) is defined, continue and always negative over the interval [ 3 2 , + ∞ ) , since cos ( x 1 ) > 0 on ( π 2 , + ∞ ) ⊇ [ 3 2 , + ∞ ) and cos ( x 1 ) ≤ 1 ⇒ x 1 lo g cos ( x 1 ) ≤ 0 ∀ x ∈ ( π 2 , + ∞ ) ⊇ [ 3 2 , + ∞ ) Thus, we can apply the asymptotic comparison criteria.
When x → + ∞ , f ( x ) ∼ − 2 x 3 1 , therefore the integral c o n v e r g e s .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: L'Hopital's Rule - Basic
I = ∫ 3 2 ∞ x lo g ( cos x 1 ) d x = ∫ 0 2 3 u lo g ( cos u ) d u Let u = x 1 ⟹ d u = − x 2 d x
We note that the integrand u lo g ( cos u ) is defined over u ∈ ( 0 , 2 3 ) , if u → 0 lim u lo g ( cos u ) exists.
L = u → 0 lim u lo g ( cos u ) = u → 0 lim 1 − tan u = 0 A 0/0 case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. x
Therefore, the integrand is defined over the interval and the integral I converges .