Does this integral exist?

Calculus Level 3

2 / 3 + 1 x log ( cos ( 1 x ) ) d x \large \int_{2/3}^{+\infty} \frac{1}{x}\log \left( \cos \left( \frac{1}{x} \right) \right) dx Determine whether the improper integral above converges, diverges or does not exists.

Converges Diverges to + +\infty Diverges to -\infty Does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 15, 2017

Relevant wiki: L'Hopital's Rule - Basic

I = 2 3 log ( cos 1 x ) x d x Let u = 1 x d u = d x x 2 = 0 3 2 log ( cos u ) u d u \begin{aligned} I & = \int_\frac 23^\infty \frac {\log \left(\cos \frac 1x\right)}x dx & \small \color{#3D99F6} \text{Let }u = \frac 1x \implies du = - \frac {dx}{x^2} \\ & = \int_0^\frac 32 \frac {\log(\cos u)}u du \end{aligned}

We note that the integrand log ( cos u ) u \dfrac {\log(\cos u)}u is defined over u ( 0 , 3 2 ) u \in \left(0, \frac 32\right) , if lim u 0 log ( cos u ) u \displaystyle \lim_{u \to 0} \frac {\log(\cos u)}u exists.

L = lim u 0 log ( cos u ) u A 0/0 case, L’H o ˆ pital’s rule applies. = lim u 0 tan u 1 Differentiate up and down w.r.t. x = 0 \begin{aligned} L & = \lim_{u \to 0} \frac {\log(\cos u)}u & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{u \to 0} \frac {-\tan u}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = 0 \end{aligned}

Therefore, the integrand is defined over the interval and the integral I I converges .

Lorenzo Calogero
Dec 15, 2017

The integrand function f ( x ) f(x) is defined, continue and always negative over the interval [ 2 3 , + ) \left[ \frac{2}{3}, +\infty \right) , since cos ( 1 x ) > 0 \cos \left( \frac{1}{x} \right)>0 on ( 2 π , + ) [ 2 3 , + ) \left( \frac{2}{\pi}, +\infty \right) \supseteq \left[ \frac{2}{3}, +\infty \right) and cos ( 1 x ) 1 1 x log cos ( 1 x ) 0 x ( 2 π , + ) [ 2 3 , + ) \cos \left( \frac{1}{x} \right)\le1 \Rightarrow \frac{1}{x}\log\cos \left( \frac{1}{x} \right) \le 0\ \forall x\in \left( \frac{2}{\pi}, +\infty \right) \supseteq \left[ \frac{2}{3}, +\infty \right) Thus, we can apply the asymptotic comparison criteria.

When x + x\to +\infty , f ( x ) 1 2 x 3 f(x) \sim -\frac{1}{2x^3} , therefore the integral c o n v e r g e s \boxed{\mathrm{converges}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...