Does this series converges?

Calculus Level 5

S = n = 1 + e a n 2 ( 1 a n ) n 3 \large S = \sum_{n=1}^{+\infty} e^{an^2} \left ( 1 - \frac{a}{n} \right )^{n^{3}}

Given the above, where a R a \in \mathbb{R} .

S S converges iff a < 0 a < 0 . None of the others is true. S S converges iff a 0 a \neq 0 . S S diverges for any real a a . S S converges for any real a a .

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jun 14, 2018

We apply the root test, so we must investigate the limit lim n e a n 2 ( 1 a n ) n 3 n = lim n e a n 1 a n n 2 = lim h 0 + e a / h 1 a h 1 / h 2 = exp ( lim h 0 + a h + ln 1 a h h 2 ) by continuity of e x = exp ( x ) = exp ( lim h 0 + a + a 1 a h 2 h ) by L’Hopital = exp ( lim h 0 + a 2 ( 1 a h ) 2 2 ) by L’Hopital again = exp ( a 2 2 ) = e a 2 2 \begin{aligned}\lim_{n\to\infty}\sqrt[n]{\left|e^{an^2}\left(1-\frac{a}{n}\right)^{n^3}\right|} &= \lim_{n\to\infty} e^{an}\left|1-\frac{a}{n}\right|^{n^2} \\ &= \lim_{h\to 0^+} e^{a/h}\left|1-ah\right|^{1/h^2} \\ &= \exp\left(\lim_{h\to 0^+} \frac{ah + \ln|1-ah|}{h^2}\right) \qquad & \text{by continuity of } e^x = \exp(x)\\ &= \exp\left(\lim_{h\to 0^+} \frac{a + \frac{-a}{1-ah}}{2h}\right) & \text{by L'Hopital}\\ &= \exp\left(\lim_{h\to 0^+} \frac{-\frac{a^2}{(1-ah)^2}}{2}\right) & \text{by L'Hopital again}\\ &= \exp\left(-\frac{a^2}{2}\right) = e^{-\frac{a^2}{2}} \end{aligned} Since this limit exists and e a 2 / 2 < 1 e^{-a^2/2} < 1 for all nonzero a a , it follows that the series converges for all nonzero a a .

For a = 0 a=0 , the root test is inconclusive, but luckily setting a = 0 a=0 in the original series yields n = 1 e 0 n 2 ( 1 0 n ) n 3 = n = 1 1 \sum_{n=1}^\infty e^{0\cdot n^2}\left(1-\frac{0}{n}\right)^{n^3} = \sum_{n=1}^\infty 1 which obviously diverges.

We conclude that the series converges if and only if a 0 a\neq 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...