Does this telescope?

Calculus Level 5

For all n n , let n = 0 1 x n x 3 + 1 d x \ell_n = \displaystyle\int_{0}^{1} {\frac{x^n}{\sqrt{x^3+1}}} dx . Suppose that m = 20142014...2014 2014 times m = \underbrace{20142014...2014}_{\text{2014 times}} , evaluate to 3 decimal places the value of ( 2 m 1 ) m + 2 ( m 2 ) m 3 (2m-1)\ell_m + 2(m-2) \ell_{m-3} .

Note: This is not original but I cannot find the source. If you know its source, please tag me in the comments. Thank you!


The answer is 2.828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karthik Kannan
Jun 16, 2014

l n = 0 1 x n x 3 + 1 d x l_{n}=\displaystyle\int_{0}^{1} \frac{x^{n}}{\sqrt{x^{3}+1}}dx

Let us write l n l_{n} as folllows:

l n = 0 1 x n 2 x 2 x 3 + 1 d x l_{n}=\displaystyle\int_{0}^{1} x^{n-2}\frac{x^{2}}{\sqrt{x^{3}+1}}dx

Now using integration by parts:

l n = x n 2 × 2 x 3 + 1 3 0 1 0 1 ( n 2 ) x n 3 × 2 x 3 + 1 3 d x l_{n}=x^{n-2}\times\left.\displaystyle\frac{2\sqrt{x^{3}+1}}{3}\right|_{0}^{1}-\displaystyle\int_{0}^{1} (n-2)x^{n-3}\times\displaystyle\frac{2\sqrt{x^{3}+1}}{3}dx

l n = 2 2 3 2 ( n 2 ) 3 0 1 x n 3 ( x 3 + 1 ) x 3 + 1 d x \therefore l_{n}=\displaystyle\frac{2\sqrt{2}}{3}-\displaystyle\frac{2(n-2)}{3}\displaystyle\int_{0}^{1} \frac{x^{n-3}(x^{3}+1)}{\sqrt{x^{3}+1}}dx

l n = 2 2 3 2 ( n 2 ) 3 0 1 x n 3 + x n x 3 + 1 d x \therefore l_{n}=\displaystyle\frac{2\sqrt{2}}{3}-\displaystyle\frac{2(n-2)}{3}\displaystyle\int_{0}^{1} \frac{x^{n-3}+x^{n}}{\sqrt{x^{3}+1}}dx

l n = 2 2 3 2 ( n 2 ) 3 ( l n 3 + l n ) \therefore l_{n}=\displaystyle\frac{2\sqrt{2}}{3}-\displaystyle\frac{2(n-2)}{3}\left( l_{n-3}+l_{n}\right)

Rearranging, we obtain:

( 2 n 1 ) l n + 2 ( n 2 ) l n 3 = 2 2 (2n-1)l_{n}+2(n-2)l_{n-3}=2\sqrt{2}

Hence ( 2 m 1 ) l m + 2 ( m 2 ) l m 3 = 2 2 (2m-1)l_{m}+2(m-2)l_{m-3}=\boxed{2\sqrt{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...