A calculus problem by Isay Katsman

Calculus Level 5

0 2 1 x 4 + 16 d x = log ( a ) + b tan 1 ( c ) d e \int^{\sqrt{2}}_{0} \frac{1}{x^4+16}dx = \frac{\log(a) + b \tan^{-1} (c)}{d\sqrt{e}}

With a a and e e square-free. What is the value of the product of integers a b c d e abcde ?


The answer is 1280.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jan 16, 2018

I = 0 2 1 x 4 + 16 d x \large \displaystyle I = \int_0^{\sqrt{2}} \frac{1}{x^4 + 16} dx

By partial fractions:

I = 1 16 2 0 2 [ x + 2 2 x 2 + 2 2 x + 4 x 2 2 x 2 2 2 x + 4 ] d x \large \displaystyle I = \frac{1}{16\sqrt{2}} \int_0^{\sqrt{2}} \left [ \frac{x + 2\sqrt{2}}{x^2 + 2\sqrt{2}x + 4} - \frac{x - 2\sqrt{2}}{x^2 - 2\sqrt{2}x + 4} \right ] dx

I = 1 16 2 0 2 [ x + 2 2 ( x + 2 ) 2 + 2 x 2 2 ( x 2 ) 2 + 2 ] d x \large \displaystyle I = \frac{1}{16\sqrt{2}} \int_0^{\sqrt{2}} \left [ \frac{x + 2\sqrt{2}}{ ( x + \sqrt{2})^2 + 2} - \frac{x - 2\sqrt{2}}{( x - \sqrt{2})^2 + 2} \right ] dx

Multuplying below and above by 2 2 :

I = 1 32 2 0 2 [ 2 x + 4 2 ( x + 2 ) 2 + 2 2 x 4 2 ( x 2 ) 2 + 2 ] d x \large \displaystyle I = \frac{1}{32\sqrt{2}} \int_0^{\sqrt{2}} \left [ \frac{2x + 4\sqrt{2}}{ ( x + \sqrt{2})^2 + 2} - \frac{2x - 4\sqrt{2}}{( x - \sqrt{2})^2 + 2} \right ] dx

I = 1 32 2 [ 0 2 2 x + 2 2 ( x + 2 ) 2 + 2 d x + 0 2 2 2 ( x + 2 ) 2 + 2 d x 0 2 2 x 2 2 ( x 2 ) 2 + 2 d x + 0 2 2 2 ( x 2 ) 2 + 2 d x ] \large \displaystyle I = \frac{1}{32\sqrt{2}} \left [ \int_0^{\sqrt{2}} \frac{2x + 2\sqrt{2}}{ ( x + \sqrt{2})^2 + 2} dx + \int_0^{\sqrt{2}} \frac{2\sqrt{2}}{ ( x + \sqrt{2})^2 + 2} dx - \int_0^{\sqrt{2}} \frac{2x - 2\sqrt{2}}{ ( x - \sqrt{2})^2 + 2} dx + \int_0^{\sqrt{2}} \frac{2\sqrt{2}}{ ( x - \sqrt{2})^2 + 2} dx \right ]

I = 1 32 2 [ ln [ ( x + 2 ) 2 + 2 ] 0 2 + 0 2 2 ( x 2 + 1 ) 2 + 1 d x ln [ ( x 2 ) 2 + 2 ] 0 2 + 0 2 2 ( x 2 1 ) 2 + 1 d x ] \large \displaystyle I = \frac{1}{32\sqrt{2}} \left [ \ln[ (x+\sqrt{2})^2 + 2] \Bigg |_0^{\sqrt{2}} + \int_0^{\sqrt{2}} \frac{\sqrt{2}}{ \left ( \frac{x}{\sqrt{2}} + 1 \right )^2 + 1} dx - \ln[ (x-\sqrt{2})^2 + 2] \Bigg |_0^{\sqrt{2}} + \int_0^{\sqrt{2}} \frac{\sqrt{2}}{ \left ( \frac{x}{\sqrt{2}} - 1 \right )^2 + 1} dx \right ]

I = 1 32 2 [ ( ln ( 10 ) ln ( 4 ) ) + 2 2 tan 1 ( x 2 + 1 ) 0 2 ( ln ( 2 ) ln ( 4 ) ) + 2 2 tan 1 ( x 2 1 ) 0 2 ] \large \displaystyle I = \frac{1}{32\sqrt{2}} \left [ (\ln(10) - \ln(4) ) + \sqrt{2} \cdot \sqrt{2} \tan^{-1} \left ( \frac{x}{\sqrt{2}} + 1 \right ) \Bigg |_0^{\sqrt{2}} - (\ln(2) - \ln(4) ) + \sqrt{2} \cdot \sqrt{2} \tan^{-1} \left ( \frac{x}{\sqrt{2}} - 1 \right ) \Bigg |_0^{\sqrt{2}} \right ]

I = 1 32 2 [ ln ( 10 ) ln ( 2 ) + 2 ( tan 1 ( 2 ) tan 1 ( 1 ) ) + 2 ( tan 1 ( 0 ) tan 1 ( 1 ) ) ] \large \displaystyle I = \frac{1}{32\sqrt{2}} \left [ \ln(10) - \ln(2) + 2(\tan^{-1} (2) - \tan^{-1} (1) ) + 2(\tan^{-1} (0) - \tan^{-1} (-1) ) \right ]

I = ln ( 5 ) + 2 tan 1 ( 2 ) 32 2 \color{#20A900} \boxed{ \large \displaystyle I = \frac{\ln(5) + 2\tan^{-1}(2)}{32\sqrt{2}} }

Then:

a = 5 , b = 2 , c = 2 , d = 32 , e = 2 , a b c d e = 1280 \color{#3D99F6} \large \displaystyle a = 5, b = 2, c = 2, d = 32, e = 2, \boxed{\large \displaystyle abcde = 1280}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...