Doing series is fun!

Calculus Level 4

Recall that ( 1 + x ) n = 1 + n x 1 ! + n ( n 1 ) x 2 2 ! + \large (1+x)^n = 1+ \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots

for 1 < x < 1 -1<x<1 .

Then what is 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + ? \large 1 + \frac{1}{3} + \frac{1\cdot3}{3\cdot6} + \frac{1\cdot3\cdot5}{3\cdot6\cdot9} + \cdots ?


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

2 \sqrt2 1 3 \frac{1}{\sqrt{3}} 4 \sqrt4 3 \sqrt3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 19, 2017

Relevant wiki: Fractional Binomial Theorem

( 1 + x ) n = 1 + n x 1 ! + n ( n 1 ) x 2 2 ! + n ( n 1 ) ( n 2 ) x 3 3 ! + . . . Putting n = 1 2 ( 1 + x ) 1 2 = 1 1 2 1 ! x + 1 3 2 2 2 ! x 2 1 3 5 2 3 3 ! x 3 + . . . Putting x = 2 3 ( 1 2 3 ) 1 2 = 1 + 1 2 1 ! ( 2 3 ) + 1 3 2 2 2 ! ( 2 3 ) 2 + 1 3 5 2 3 3 ! ( 2 3 ) 3 + . . . = 1 + 1 3 1 ! + 1 3 3 2 2 ! + 1 3 5 3 3 3 ! + . . . = 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + . . . \begin{aligned} (1+x)^n & = 1 + \frac {nx}{1!} + \frac {n(n-1)x^2}{2!} + \frac {n(n-1)(n-2)x^3}{3!} + ... & \small \color{#3D99F6} \text{Putting }n = -\frac 12 \\ (1+x)^{-\frac 12} & = 1 - \frac 1{2\cdot 1!}x + \frac {1\cdot 3}{2^2\cdot 2!}x^2 - \frac {1\cdot 3 \cdot 5}{2^3\cdot 3!}x^3 + ... & \small \color{#3D99F6} \text{Putting }x = -\frac 23 \\ \left(1-\frac 23\right)^{-\frac 12} & = 1 + \frac 1{2\cdot 1!}\left(\frac 23 \right) + \frac {1\cdot 3}{2^2\cdot 2!}\left(\frac 23 \right)^2 + \frac {1\cdot 3 \cdot 5}{2^3\cdot 3!}\left(\frac 23 \right)^3 + ... \\ & = 1 + \frac 1{3\cdot 1!} + \frac {1\cdot 3}{3^2\cdot 2!} + \frac {1\cdot 3 \cdot 5}{3^3\cdot 3!} + ... \\ & = 1 + \frac 13 + \frac {1\cdot 3}{3\cdot 6} + \frac {1\cdot 3 \cdot 5}{3\cdot 6 \cdot 9} + ... \end{aligned}

1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + . . . = ( 1 2 3 ) 1 2 = ( 1 3 ) 1 2 = 3 \begin{aligned} 1 + \frac 13 + \frac {1\cdot 3}{3\cdot 6} + \frac {1\cdot 3 \cdot 5}{3\cdot 6 \cdot 9} + ... & = \left(1-\frac 23\right)^{-\frac 12} = \left(\frac 13\right)^{-\frac 12} = \boxed{\sqrt 3} \end{aligned}

Tom Engelsman
May 27, 2018

Upon observation, the numerator is expressible as:

( 2 n ) ! 2 n n ! \large \frac{(2n)!}{2^n \cdot n!}

and the denominator as:

3 n n ! 3^n \cdot n!

which results in the summation:

Σ n = 0 1 3 n n ! ( 2 n ) ! 2 n n ! = Σ n = 0 ( 2 n n ) ( 1 6 ) n = 1 1 4 ( 1 6 ) = 1 1 2 3 = 1 1 3 = 3 . \Sigma_{n=0}^{\infty} \frac{1}{3^n \cdot n!} \cdot \frac {(2n)!}{2^n \cdot n!} = \Sigma_{n=0}^{\infty} \binom{2n}{n} (\frac{1}{6})^n = \frac{1}{\sqrt{1 - 4(\frac{1}{6})}} = \frac{1}{\sqrt{1 - \frac{2}{3}}} = \frac{1}{\frac{1}{\sqrt{3}}} =\boxed{\sqrt{3}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...