Domain, Max and Min

Algebra Level 2

In the domain b x 0 b \leq x \leq 0 , where b < 1 b<-1 , the quadratic function f ( x ) = x 2 + 2 x + a f(x)=x^2+2x+a has the maximum value 63 , 63, and the minimum value 1 -1 . What is the value of a b ? a-b?

9 11 13 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shravan Jain
Feb 22, 2014

f ( x ) = x 2 + 2 x + a f ( x ) = 2 x + 2 f ( x ) i s e q u a l t o z e r o f o r m i n o r m a x v a l u e o f f ( x ) b u t a s c o e f f i c i e n t o f x 2 i s g r e a t e r t h a n z e r o , f ( x ) i s z e r o f o r m i n v a l u e o f f ( x ) 2 x + 2 = 0 x = 1 f ( 1 ) = f ( x ) m i n = 1 i e , ( 1 ) 2 + 2 ( 1 ) + a = 1 a = 0 f ( x ) = x 2 + 2 x N o w , f ( x ) m a x = 63 i e , x 2 + 2 x = 63 x = 9 , 7 a s x 0 , x = 9 b = 9 s o , a b = 0 ( 9 ) = 9 \\ \\ f\left( x \right) ={ x }^{ 2 }+2x+a\\ f^{ ' }\left( x \right) =2x+2\\ f^{ ' }\left( x \right) \quad is\quad equal\quad to\quad zero\quad for\quad min\quad or\quad max\quad value\quad of\quad f\left( x \right) \\ but\quad as\quad coefficient\quad of\quad { x }^{ 2 }\quad is\quad greater\quad than\quad zero,\quad f^{ ' }\left( x \right) \quad is\quad zero\quad for\quad min\quad value\quad of\quad f\left( x \right) \\ \therefore \quad 2x+2=0\quad \Rightarrow \quad x=-1\\ f\left( -1 \right) =\quad { f\left( x \right) }_{ min }\quad =-1\\ ie,\quad { (-1 })^{ 2 }\quad +2(-1)\quad +a\quad =-1\\ \Rightarrow \quad a=0\\ \therefore \quad f\left( x \right) ={ x }^{ 2 }+2x\\ Now,\quad { f\left( x \right) }_{ max }=63\\ ie,\quad { x }^{ 2 }+2x=63\\ \Rightarrow x=-9,7\\ as\quad x\le 0,\quad x=-9\\ \therefore \quad b=-9\\ so,\quad a-b=\quad 0-(-9)\quad =\boxed { 9 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...