An algebra problem by Md Zuhair

Algebra Level 3

arg ( r = 1 2013 i r ) \large \arg \left(\sum^{2013}_{r=1} i^r\right)

If the expression above equals to a a^\circ , where 0 a 90 0 \leq a \leq 90 , find a a .

Notation: i = 1 i = \sqrt{-1} is the imaginary unit .


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Mar 29, 2017

Lemma:

The sum of consecutive powers of i i in cycles of 4 4 is 0 0 .

Proof:

Since we know that

i n : = { i ; n = 4 k + 1 1 ; n = 4 k + 2 i ; n = 4 k + 3 1 ; n = 4 k i^n := \begin{cases} i & ; & n = 4k+1 \\ -1 & ; & n = 4k+2 \\ -i & ; & n = 4k+3 \\ 1 & ; & n = 4k \end{cases}

So over any set of consecutive cycles of 4 4 in the exponent of i i (eg - starting with 4 k + 1 4k+1 ), we have

j = 4 n + 1 4 m i j = ( m n ) j = 1 4 i j = ( m n ) ( 0 ) = 0 \displaystyle \sum_{j=4n+1}^{4m} i^j = (m-n) \sum_{j=1}^{4} i^j = (m-n) (0) = 0

Thus, the lemma is true.

Similarly we can write

r = 1 2013 i r = r = 1 2012 i r + i 2013 = i 2013 = i ( 2012 0 ( m o d 4 ) r = 1 2012 i r = 0 ) \displaystyle \sum_{r=1}^{2013} i^r = \sum_{r=1}^{2012} i^r + i^{2013} = i^{2013} = i \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \color{#3D99F6} \left( \because 2012 \equiv 0 \pmod{4} \implies \sum_{r=1}^{2012} i^r = 0 \right)

Hence arg ( i ) = π 2 = 9 0 \arg (i) = \dfrac{\pi}{2} = 90^{\circ} .

So 90 45 = 45 90-45 = \boxed{45} .

Chew-Seong Cheong
Mar 29, 2017

arg ( r = 1 2013 i r ) = arg ( i × i 2013 1 i 1 ) = arg ( i × i 4 × 503 + 1 1 i 1 ) = arg ( i × i 1 i 1 ) = arg i = 9 0 \begin{aligned} \arg \left(\sum_{r=1}^{2013} i^r \right) & = \arg \left(i \times \frac {i^{2013}-1}{i-1} \right) \\ & = \arg \left(i \times \frac {i^{4\times503+1}-1}{i-1} \right) \\ & = \arg \left(i \times \frac {i-1}{i-1} \right) \\ & = \arg i = 90^\circ \end{aligned}

a = 90 \implies a = \boxed{90}


Alternative solution

Note that i n = { 1 if n mod 4 = 0 i if n mod 4 = 1 1 if n mod 4 = 2 i if n mod 4 = 3 i^n = \begin{cases} 1 & \text{if } n \text{ mod }4 = 0 \\ i & \text{if } n \text{ mod }4 = 1 \\ -1 & \text{if } n \text{ mod }4 = 2 \\ -i & \text{if } n \text{ mod }4 = 3 \end{cases}

r = 0 n i r = { 1 if n mod 4 = 0 1 + i if n mod 4 = 1 i if n mod 4 = 2 0 if n mod 4 = 3 r = 1 n i r = { 1 if n mod 4 = 0 1 + i if n mod 4 = 1 i if n mod 4 = 2 0 if n mod 4 = 3 1 r = 1 2013 i r = 1 + i 1 = i As 2013 mod 4 = 1 arg ( r = 1 2013 i r ) = arg i = 9 0 \begin{aligned} \implies \sum_{\color{#D61F06}r=0}^n i^r & = \begin{cases} 1 & \text{if } n \text{ mod }4 = 0 \\ 1+ i & \text{if } n \text{ mod }4 = 1 \\ i & \text{if } n \text{ mod }4 = 2 \\ 0 & \text{if } n \text{ mod }4 = 3 \end{cases} \\ \sum_{\color{#3D99F6}r=1}^n i^r & = \begin{cases} 1 & \text{if } n \text{ mod }4 = 0 \\ 1+ i & \text{if } n \text{ mod }4 = 1 \\ i & \text{if } n \text{ mod }4 = 2 \\ 0 & \text{if } n \text{ mod }4 = 3 \end{cases} - 1 \\ \implies \sum_{\color{#3D99F6}r=1}^{2013} i^r & = {\color{#3D99F6} 1+i } - 1 = i & \small \color{#3D99F6} \text{As } 2013 \text{ mod }4 = 1 \\ \arg \left( \sum_{r=1}^{2013} i^r \right) & = \arg i = 90^\circ \end{aligned}

a = 90 \implies a = \boxed{90}

Sir cant we just o GP sum, then put into i properties?

Md Zuhair - 4 years, 2 months ago

Log in to reply

Yes, we can. I think it is tougher.

Chew-Seong Cheong - 4 years, 2 months ago

Added the solution.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Thankyou very much sir

Md Zuhair - 4 years, 2 months ago

Md, as arg \arg is a function add a backslash in front. Without backslash, it is italic as in here a r g arg and there is no space before the operand. Use ^\ circ for ^\circ .

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...