Don't be confused!

Algebra Level 3

If x x satisfy the equation x 4 x 2 + 1 = 0 x^4 - x^2 + 1 = 0 , find the value of x 5 + 1 x x^5 + \dfrac1x .

Clarification : Yes, it is indeed 1 x \dfrac1x , not 1 x 5 \dfrac1{x^5} .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

x 4 x 2 + 1 = 0 \Rightarrow x^4-x^2+1=0

Multiplying by x 2 x^2 both sides.

x 6 x 4 + x 2 = 0 x^6-x^4+x^2=0

x 6 = x 4 x 2 x^6=x^4-x^2

We need to find: x 5 + 1 x = x 6 + 1 x x^5+\dfrac{1}{x}=\dfrac{x^6+1}{x}

x 4 x 2 + 1 x = 0 x = 0 \dfrac{x^4-x^2+1}{x}=\dfrac{0}{x}=\boxed{0}

Chew-Seong Cheong
Apr 18, 2016

x 4 x 2 + 1 = 0 { x 4 = x 2 1 x 5 = x 3 x x 3 x + 1 x = 0 1 x = x 3 + x x 5 + 1 x = 0 x^4 - x^2 + 1 = 0 \quad \Rightarrow \begin{cases} x^4 = x^2 - 1 & \Rightarrow \color{#3D99F6}{x^5 = x^3 - x} \\ x^3 - x + \dfrac{1}{x} = 0 & \Rightarrow \color{#3D99F6}{\dfrac{1}{x} = -x^3 +x} \end{cases} \quad \Rightarrow x^5 + \dfrac{1}{x} = \boxed{0}

Abhay Tiwari
Apr 19, 2016

I have a simpler one: :)

Given equation :

x 4 x 2 + 1 = 0 x^4 - x^2 + 1 = 0 --------- 1 \boxed{1}

divide equation 1 by x x

we get

x 3 x + 1 x = 0 x^{3}-x+\frac{1}{x}=0 , from here

1 x = x x 3 \frac{1}{x}=x-x^{3} ...... 2 \boxed{2}

Multiply eq. 1 by x x

we get:

x 5 x 3 + x = 0 x^{5}-x^{3}+x=0 , from here

x 5 = x 3 x x^{5}=x^{3}-x ....... 3 \boxed{3}

Add eq. 2 and 3

we get: 1 x + x 5 = x x 3 + x 3 x \frac{1}{x}+x^{5}=x-x^{3}+x^{3}-x = 0 \boxed{0}

Nice solution by Abhay. Just highlighting a solution using complex numbers.
x 4 x 2 + 1 = 0 x^{4} - x^{2} + 1 = 0
x 2 + 1 x 2 = 1 x^{2} + \dfrac{1}{x^{2}} = 1
Let x 2 = e i y x^{2} = e^{iy}
e i y + e i y = 1 e^{iy} + e^{-iy} = 1
cos ( y ) + i sin ( y ) + cos ( y ) i sin ( y ) = 1 \cos(y) + i\sin(y) + \cos(y) -i\sin(y) = 1
cos ( y ) = 1 2 \cos(y) = \dfrac{1}{2}
Therefore, x = e i π 6 x= e^{i\frac{\pi}{6}} is a root of this equation,





x 5 + 1 x = e i 5 i π 6 + e i π 6 = e i π e i π 6 + e i π 6 = e i π 6 ( e i π + 1 ) = e i π 6 0 = 0 x^{5} + \dfrac{1}{x} = e^{i\frac{5i\pi}{6}} + e^{\frac{-i\pi}{6}} = e^{i\pi}\cdot e^{\frac{-i\pi}{6}} + e^{\frac{-i\pi}{6}} = e^{\frac{-i\pi}{6}}(e^{i\pi}+1) = e^{\frac{-i\pi}{6}} \cdot 0 = 0

Hung Woei Neoh
Apr 30, 2016

Notice that:

( x + 1 x ) ( x 4 x 2 + 1 ) = x 5 + x 3 x 3 x + x + 1 x = x 5 + 1 x \left( x + \dfrac{1}{x} \right) \left(x^4-x^2+1 \right) = x^5 + x^3 - x^3 - x + x + \dfrac{1}{x} = x^5 + \dfrac{1}{x}

Since we know that x 4 x 2 + 1 = 0 x^4 - x^2 + 1 = 0 , we can substitute it in:

( x + 1 x ) ( 0 ) = x 5 + 1 x \left( x + \dfrac{1}{x} \right) \left(0 \right) = x^5 + \dfrac{1}{x}

x 5 + 1 x = 0 \implies x^5 + \dfrac{1}{x} = \boxed{0}

I suppose you have written a wrong sign for1/x. Shouldn't it be a (+1/x).

Puneet Pinku - 5 years, 1 month ago

Log in to reply

Ah, my bad. Thanks for notifying me!

Hung Woei Neoh - 5 years, 1 month ago

We observe that x = 0 x=0 is not a root of the given equation. Thus, multiplying the given equation by ( x 2 + 1 ) x \displaystyle \frac{(x^{2}+1)}{x} and using the factorisation formula for a 3 + b 3 a^{3}+b^{3} : ( x 2 + 1 ) ( x 4 x 2 + 1 ) x = 0 x 5 + 1 x = 0 \displaystyle \frac{(x^{2}+1)(x^{4}-x^{2}+1)}{x} = 0 \Rightarrow \boxed{x^5 + \frac{1}{x} = 0}

Aditya Dhawan
Apr 19, 2016

x 4 + 1 = x 2 x 2 + 1 x 2 = 1 x 2 + 1 x 2 + 2 = 3 ( x + 1 x ) = ± 3 ( x 2 + 1 x 2 ) ( x + 1 x ) = ± 3 x 3 + 1 x 3 = 0 x 5 + 1 x = x 2 ( x 3 + 1 x 3 ) = 0 { \quad x }^{ 4 }+1=\quad { x }^{ 2\quad }\quad \\ \therefore { \quad x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =\quad 1\quad \\ \therefore \quad { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } +2=3\\ \therefore \quad \left( x+\frac { 1 }{ x } \right) =\pm \sqrt { 3 } \\ \therefore \left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) \left( x+\frac { 1 }{ x } \right) =\quad \pm \sqrt { 3 } \\ { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } =\quad 0\\ \therefore \quad { x }^{ 5 }+\frac { 1 }{ x } =\quad { x }^{ 2 }\left( { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } \right) =\quad \boxed { 0 } \\ \\ \\ \\

How does x^3+ 1/x^3 = 0??

Puneet Pinku - 5 years, 1 month ago

Log in to reply

( x 2 + 1 x 2 ) ( x + 1 x ) = ± 3 = x + 1 x x 3 + 1 x 3 + x + 1 x = x + 1 x x 3 + 1 x 3 = 0 ({ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } )({ x }+\frac { 1 }{ x } )=\pm \sqrt { 3 } =x+\frac { 1 }{ x } \\ \Rightarrow { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +x+\frac { 1 }{ x } =x+\frac { 1 }{ x } \\ \Rightarrow { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } =0

I have hence edited the answer for more clarity

Aditya Dhawan - 5 years, 1 month ago

Log in to reply

Thanks I have understood it..

Puneet Pinku - 5 years, 1 month ago
Aditya Kumar
May 12, 2016

Take x^2 common and then show that x^3+1/x^3 =0and the question is solved

Arnav Goel
May 1, 2016

Clearly the roots of the above equation are x^2 = -w , -w^(2) which are cube roots of unity . Put any of them above to get zero directly

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...