Don't expaaaaaand it!

Geometry Level 2

sec 2 x 1 1 cos 2 x cos 2 x csc 2 x 1 cos 2 x cot 2 x \begin{vmatrix} \sec ^{ 2 }{ x } & 1 & 1 \\ \cos ^{ 2 }{ x } & \cos ^{ 2 }{ x } & \csc ^{ 2 }{ x } \\ 1 & \cos ^{ 2 }{ x } & \cot ^{ 2 }{ x } \end{vmatrix}

The expression above represents a determinant of a matrix.

If the range of the expression above is ( a , b ) (a,b) , submit your answer as the product a b a\cdot b .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu Kadiri
Mar 4, 2019

f ( x ) = sec 2 x 1 1 cos 2 x cos 2 x csc 2 x 1 cos 2 x cot 2 x = cos 2 x sec 2 x sec 2 x 1 cos 2 x 1 csc 2 x 1 1 cot 2 x = cos 2 x cot 2 x sec 2 x sec 2 x tan 2 x cos 2 x 1 sec 2 x 1 1 1 = cot 2 x 1 1 sin 2 x cos 2 x 1 sec 2 x 1 1 1 = cot 2 x 0 cos 2 x sin 2 x sin 2 x tan 2 x sec 2 x 0 0 1 = cot 2 x sin 2 x cos 2 x = cos 4 x f\left( x \right) =\begin{vmatrix} \sec ^{ 2 }{ x } & 1 & 1 \\ \cos ^{ 2 }{ x } & \cos ^{ 2 }{ x } & \csc ^{ 2 }{ x } \\ 1 & \cos ^{ 2 }{ x } & \cot ^{ 2 }{ x } \end{vmatrix}=\cos ^{ 2 }{ x } \begin{vmatrix} \sec ^{ 2 }{ x } & \sec ^{ 2 }{ x } & 1 \\ \cos ^{ 2 }{ x } & 1 & \csc ^{ 2 }{ x } \\ 1 & 1 & \cot ^{ 2 }{ x } \end{vmatrix}=\cos ^{ 2 }{ x } \cot ^{ 2 }{ x } \begin{vmatrix} \sec ^{ 2 }{ x } & \sec ^{ 2 }{ x } & \tan ^{ 2 }{ x } \\ \cos ^{ 2 }{ x } & 1 & \sec ^{ 2 }{ x } \\ 1 & 1 & 1 \end{vmatrix}=\cot ^{ 2 }{ x } \begin{vmatrix} 1 & 1 & \sin ^{ 2 }{ x } \\ \cos ^{ 2 }{ x } & 1 & \sec ^{ 2 }{ x } \\ 1 & 1 & 1 \end{vmatrix}=\cot ^{ 2 }{ x } \begin{vmatrix} 0 & \cos ^{ 2 }{ x } & \sin ^{ 2 }{ x } \\ -\sin ^{ 2 }{ x } & -\tan ^{ 2 }{ x } & \sec ^{ 2 }{ x } \\ 0 & 0 & 1 \end{vmatrix}=\cot ^{ 2 }{ x } \sin ^{ 2 }{ x } \cos ^{ 2 }{ x } =\cos ^{ 4 }{ x } Thus, least upper bound is 1 and greatest lower bound is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...