[ ( x 2 + x + 1 ) 3 − ( x 2 + 1 ) 3 − x 3 ] [ ( x 2 − x + 1 ) 3 − ( x 2 + 1 ) 3 + x 3 ] = 3 [ ( x 4 + x 2 + 1 ) 3 − ( x 4 + 1 ) 3 − x 6 ]
Find the sum of all the integral values of x which satisfy the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Same way. I bet the only reason that this problem is lvl 4 because of its scary look
To avoid expanding the expression, we can choose appropriate substitutions and use the identity ( a + b ) 3 − a 3 − b 3 = 3 a b ( a + b ) .
On the LHS, let m = x 2 + 1 and on the RHS, let n = x 4 + 1 .
[ ( m + x ) 3 − m 3 − x 3 ] [ ( m − x ) 3 − m 3 + x 3 ] = 3 [ ( n + x 2 ) 3 − n 3 − ( x 2 ) 3 ] [ 3 m x ( x + m ) ] ∗ [ 3 m x ( x − m ) ] = 3 [ 3 n x 2 ( n + x 2 ) ]
Dividing both sides by 9, m 2 x 2 ( x 2 − m 2 ) = n x 2 ( n + x 2 )
which gives us x = 0. Next we note that n = x 4 + 1 = ( x 2 + 1 ) 2 − 2 x 2 = m 2 − 2 x 2 . Substituting this back into the equation and dividing by x^2,
m 2 ( x 2 − m 2 ) = ( m 2 − 2 x 2 ) ( m 2 − x 2 ) ( x 2 − m 2 ) ( 2 m 2 − 2 x 2 ) = 0 − 2 ( x − m ) 2 ( x + m ) 2 = 0 x = m or x = − m gives us x 2 − x + 1 = 0 or x 2 + x + 1 = 0 which have no integer solutions.
Hence the only integer solution is x = 0 and the sum of integral values of x is 0 .
Exactly !!
I did it the same way.
Problem Loading...
Note Loading...
Set Loading...
Let y = x 2 + 1 , then:
( x 2 + x + 1 ) 3 − ( x 2 + 1 ) 3 − x 3 = ( y + x ) 3 − y 3 − x 3 = y 3 + 3 y 2 x + 3 y x 2 + x 3 − y 3 − x 3 = 3 x y ( x + y ) = 3 x ( x 2 + 1 ) ( x 2 + x + 1 )
Similarly,
( x 2 − x + 1 ) 3 − ( x 2 + 1 ) 3 + x 3 = ( y − x ) 3 − y 3 + x 3 = y 3 − 3 y 2 x + 3 y x 2 − x 3 − y 3 + x 3 = 3 x y ( x − y ) = − 3 x ( x 2 + 1 ) ( x 2 − x + 1 )
And,
( x 4 + x 2 + 1 ) 3 − ( x 2 + 1 ) 3 − x 3 = 3 x 2 ( x 4 + 1 ) ( x 4 + x 2 + 1 )
Therefore,
L H S = [ 3 x y ( x + y ) ] [ 3 x y ( x − y ) ] = 9 x 2 y 2 ( x 2 − y 2 ) = − 9 x 2 ( x 2 + 1 ) 2 ( x 4 + x 2 + 1 )
⇒ − 9 x 2 ( x 2 + 1 ) 2 ( x 4 + x 2 + 1 ) x 2 ( x 4 + x 2 + 1 ) ( x 4 + 1 + x 4 + 2 x 2 + 1 ) x 2 ( x 4 + x 2 + 1 ) 2 ⇒ x = 9 x 2 ( x 4 + 1 ) ( x 4 + x 2 + 1 ) = 0 = 0 = 0 x 4 + x 2 + 1 has no real root.
Therefore, the sum of all integral values of x is 0 .