Don't expand

Algebra Level 4

[ ( x 2 + x + 1 ) 3 ( x 2 + 1 ) 3 x 3 ] [ ( x 2 x + 1 ) 3 ( x 2 + 1 ) 3 + x 3 ] = 3 [ ( x 4 + x 2 + 1 ) 3 ( x 4 + 1 ) 3 x 6 ] \begin{aligned} &\left[(x^2+x+1)^3-(x^2+1)^3-x^3\right] \left[(x^2-x+1)^3-(x^2+1)^3+x^3\right]& \\ &= & \\ &3 \left[(x^4+x^2+1)^3-(x^4+1)^3-x^6\right] &\end{aligned}

Find the sum of all the integral values of x x which satisfy the equation above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 24, 2015

Let y = x 2 + 1 y = x^2+1 , then:

( x 2 + x + 1 ) 3 ( x 2 + 1 ) 3 x 3 = ( y + x ) 3 y 3 x 3 = y 3 + 3 y 2 x + 3 y x 2 + x 3 y 3 x 3 = 3 x y ( x + y ) = 3 x ( x 2 + 1 ) ( x 2 + x + 1 ) \begin{aligned} (x^2+x+1)^3-(x^2+1)^3-x^3 & = (y+x)^3 - y^3 - x^3 \\ & = y^3 + 3y^2x +3yx^2 + x^3 - y^3 - x^3 \\ & = 3xy(x+y) \\ & = 3x(x^2+1)(x^2+x+1) \end{aligned}

Similarly,

( x 2 x + 1 ) 3 ( x 2 + 1 ) 3 + x 3 = ( y x ) 3 y 3 + x 3 = y 3 3 y 2 x + 3 y x 2 x 3 y 3 + x 3 = 3 x y ( x y ) = 3 x ( x 2 + 1 ) ( x 2 x + 1 ) \begin{aligned} (x^2-x+1)^3-(x^2+1)^3+x^3 & = (y-x)^3 - y^3 + x^3 \\ & = y^3 - 3y^2x + 3yx^2 - x^3 - y^3 + x^3 \\ & = 3xy(x-y) \\ & = -3x(x^2+1)(x^2-x+1) \end{aligned}

And,

( x 4 + x 2 + 1 ) 3 ( x 2 + 1 ) 3 x 3 = 3 x 2 ( x 4 + 1 ) ( x 4 + x 2 + 1 ) \begin{aligned} (x^4+x^2+1)^3-(x^2+1)^3-x^3 & = 3x^2(x^4+1)(x^4+x^2+1) \end{aligned}

Therefore,

L H S = [ 3 x y ( x + y ) ] [ 3 x y ( x y ) ] = 9 x 2 y 2 ( x 2 y 2 ) = 9 x 2 ( x 2 + 1 ) 2 ( x 4 + x 2 + 1 ) \begin{aligned} LHS & = [3xy(x+y)] [3xy(x-y)] = 9x^2y^2(x^2-y^2) = - 9x^2(x^2+1)^2(x^4+x^2+1) \end{aligned}

9 x 2 ( x 2 + 1 ) 2 ( x 4 + x 2 + 1 ) = 9 x 2 ( x 4 + 1 ) ( x 4 + x 2 + 1 ) x 2 ( x 4 + x 2 + 1 ) ( x 4 + 1 + x 4 + 2 x 2 + 1 ) = 0 x 2 ( x 4 + x 2 + 1 ) 2 = 0 x = 0 x 4 + x 2 + 1 has no real root. \begin{aligned} \Rightarrow - 9x^2(x^2+1)^2(x^4+x^2+1) & = 9x^2(x^4+1)(x^4+x^2+1) \\ x^2(x^4+x^2+1)(x^4 + 1 +x^4+2x^2+1) & = 0 \\ x^2(x^4+x^2+1)^2 & = 0 \\ \Rightarrow x & = 0 \quad \quad \small \color{#3D99F6}{x^4+x^2+1 \text{ has no real root.}} \end{aligned}

Therefore, the sum of all integral values of x x is 0 \boxed{0} .

Same way. I bet the only reason that this problem is lvl 4 because of its scary look

Shreyash Rai - 5 years, 5 months ago
Shaun Leong
Dec 23, 2015

To avoid expanding the expression, we can choose appropriate substitutions and use the identity ( a + b ) 3 a 3 b 3 = 3 a b ( a + b ) (a+b)^3-a^3-b^3 = 3ab(a+b) .

On the LHS, let m = x 2 + 1 m = x^2+1 and on the RHS, let n = x 4 + 1 n = x^4+1 .

[ ( m + x ) 3 m 3 x 3 ] [ ( m x ) 3 m 3 + x 3 ] = 3 [ ( n + x 2 ) 3 n 3 ( x 2 ) 3 ] [(m+x)^3-m^3-x^3][(m-x)^3-m^3+x^3] = 3[(n+x^2)^3-n^3-(x^2)^3] [ 3 m x ( x + m ) ] [ 3 m x ( x m ) ] = 3 [ 3 n x 2 ( n + x 2 ) ] [3mx(x+m)]*[3mx(x-m)] = 3[3nx^2(n+x^2)]

Dividing both sides by 9, m 2 x 2 ( x 2 m 2 ) = n x 2 ( n + x 2 ) m^2x^2(x^2-m^2) = nx^2(n+x^2)

which gives us x = 0. Next we note that n = x 4 + 1 = ( x 2 + 1 ) 2 2 x 2 = m 2 2 x 2 n = x^4+1 = (x^2+1)^2-2x^2 = m^2-2x^2 . Substituting this back into the equation and dividing by x^2,

m 2 ( x 2 m 2 ) = ( m 2 2 x 2 ) ( m 2 x 2 ) m^2(x^2-m^2) = (m^2-2x^2)(m^2-x^2) ( x 2 m 2 ) ( 2 m 2 2 x 2 ) = 0 (x^2-m^2)(2m^2-2x^2) = 0 2 ( x m ) 2 ( x + m ) 2 = 0 -2(x-m)^2(x+m)^2=0 x = m x=m or x = m x=-m gives us x 2 x + 1 = 0 x^2-x+1 = 0 or x 2 + x + 1 = 0 x^2+x+1 = 0 which have no integer solutions.

Hence the only integer solution is x = 0 x=0 and the sum of integral values of x is 0 \boxed {0} .

Exactly !!

Akshat Sharda - 5 years, 5 months ago

I did it the same way.

ADAMS AYOADE - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...