Don't expand

Calculus Level 5

0 π d x ( 17 cos ( x ) ) 3 \large \int_0^\pi \frac {dx}{(\sqrt{17} - \cos(x) )^3}

If the integral above equals to a π b \frac {a \pi}{b} for coprime positive integers a a and b b , calculate a + b a+b .


The answer is 2083.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jun 6, 2015

J = 0 π d x a cos x \large{J=\displaystyle \int^{\pi}_{0} \frac{dx}{a- \cos x}}

using 0 t f ( x ) . d x = 0 t f ( t x ) . d x \displaystyle \int^{t}_{0} f(x).dx=\displaystyle \int^{t}_{0} f(t-x).dx

and adding both, we obtain

2 J = 0 π 2 a a 2 cos 2 ( x ) . d x \large{2J=\displaystyle \int^{\pi}_{0} \frac{2a}{a^{2}-\cos^{2} (x)}.dx}

J = a 0 π s e c 2 ( x ) . d x a 2 s e c 2 ( x ) 1 \large{J=a \displaystyle \int^{\pi}_{0} \frac{sec^{2}(x).dx}{a^{2}sec^{2}(x)-1}}

J = 2 a 0 π 2 s e c 2 ( x ) . d x a 2 s e c 2 ( x ) 1 \large{J=2a \displaystyle \int^{\frac{\pi}{2}}_{0} \frac{sec^{2}(x).dx}{a^{2}sec^{2}(x)-1}}

let t a n x = t tanx=t

J = 2 a 0 d t a 2 t 2 + a 2 1 \large{J=2a \displaystyle \int^{\infty}_{0} \frac{dt}{a^{2}t^{2}+a^{2}-1}}

J = 2 a 0 d t ( a t ) 2 + ( a 2 1 ) 2 \large{J=2a \displaystyle \int^{\infty}_{0} \frac{dt}{(at)^{2}+(\sqrt{a^{2}-1})^{2}}}

J = 2 a ( arctan a t a 2 1 0 ) a a 2 1 \huge{J=\frac { 2a\left( { \arctan { \frac { at }{ \sqrt { { a }^{ 2 }-1 } } } }_{ 0 }^{ \infty } \right) }{ a\sqrt { { a }^{ 2 }-1 } } }

J = π a 2 1 \large{J=\frac{\pi}{\sqrt{a^2-1}}}

let I ( a ) = 0 π d x a cos x = π a 2 1 \large{I(a)=\displaystyle \int^{\pi}_{0} \frac{dx}{a- \cos x}=\frac{\pi}{\sqrt{a^{2}-1}}}

on differentiating w r t wrt a a

I ( a ) = 0 π d x ( a cos x ) 2 = π a ( a 2 1 ) 3 2 \large{I^{\prime}(a)=\displaystyle \int^{\pi}_{0} \frac{dx}{(a- \cos x)^{2}}=\frac{\pi a}{(a^2-1)^{\frac{3}{2}}}}

again differentiating

I ( a ) = 0 π 2 d x ( a cos x ) 3 = π a 2 1 ( 2 a 2 + 1 ) ( a 2 1 ) 3 \large{I^{\prime \prime}(a)=\displaystyle \int^{\pi}_{0} \frac{-2 dx}{(a- \cos x)^{3}}=\frac{- \pi \sqrt{a^2-1} (2a^2+1)}{(a^2-1)^{3}}}

0 π d x ( a cos x ) 3 = π a 2 1 ( 2 a 2 + 1 ) 2 ( a 2 1 ) 3 \huge{\displaystyle \int^{\pi}_{0} \frac{dx}{(a- \cos x)^{3}}=\frac{\pi \sqrt{a^2-1}(2a^2+1)}{2(a^2-1)^{3}}}

substitute a = 17 a=\sqrt{17} , we get

35 π 2048 \frac{35 \pi}{2048}

Moderator note:

Yes differentiating through the integral is the most sensible approach.

Thanks for adding in the details.

Can you explain why you chose to do "differentiating through the integral" instead of say Tangent half-angle substitution?

challenge master edited

Tanishq Varshney - 6 years ago

Woah! Nice! I did it using contour.

Kartik Sharma - 6 years ago

Log in to reply

POST SOLUTION! POST SOLUTION!

Pi Han Goh - 6 years ago

Brilliant! You could also use half-angle tangent substitution to evaluate J.

Joe Mansley - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...