This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Step 1:
Let f ( x ) = e e e x
f ′ ( x ) = e e e x e e x e x
Step 2: Prove that the n t h derivative of f has the following form, for n ≥ 1
f ( n ) ( x ) = \substack 1 ≤ i ≤ n 1 ≤ j ≤ n ∑ c n i j e e e x ( e e x ) i ( e x ) j
Prove by mathematical induction:
For n = 1 ,
c 1 1 1 = 1
Assume the statement is true for n = k ,
f ( k ) ( x ) = \substack 1 ≤ i ≤ k 1 ≤ j ≤ k ∑ c k i j e e e x ( e e x ) i ( e x ) j
For n = k + 1 ,
\begin{aligned} f^{(k+1)} (x) &= \frac{d}{dx} f^{(k)} (x) \\ &= \frac{d}{dx} \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} \Big[ \frac{d}{dx} (e^{e^{e^x}}) \Big] (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} \Big[ \frac{d}{dx} ( (e^{e^x})^i) \Big] (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i \Big[ \frac{d}{dx} ( (e^x)^j ) \Big] \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} \Big[ e^{e^{e^x}} e^{e^x} e^x \Big] (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} \Big[ i (e^{e^x})^i e^x\Big] (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i \Big[ j (e^x)^j \Big] \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^{i+1} (e^x)^{j+1} + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} i c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^{j+1} + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} j c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{2 \leq i \leq k+1 \\ 2 \leq j \leq k+1 }} c_{k,i-1,j-1} e^{e^{e^x}} (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 2 \leq j \leq k+1 }} i c_{ki,j-1} e^{e^{e^x}} (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} j c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k+1 \\ 1 \leq j \leq k+1 }} c_{k+1,ij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ \end{aligned}
The coefficients c k + 1 , i j are
c k + 1 , i j = 0 c k + 1 , i j = i c k i , j − 1 c k + 1 , i j = j c k i j c k + 1 , i j = c k , i − 1 , j − 1 c k + 1 , i j = i c k i , j − 1 + j c k i j c k + 1 , i j = c k , i − 1 , j − 1 + i c k i , j − 1 c k + 1 , i j = c k , i − 1 , j − 1 + i c k i , j − 1 + j c k i j for for for for for for for i = k + 1 i = 1 1 ≤ i ≤ k i = k + 1 i = 1 2 ≤ i ≤ k 2 ≤ i ≤ k and and and and and and and j = 1 j = k + 1 j = 1 2 ≤ j ≤ k + 1 2 ≤ j ≤ k j = k + 1 2 ≤ j ≤ k
Step 3:
Let y = ( e e e x ) − 1 ( e e x ) − 1 ( e x ) − 1
Prove that x → ∞ lim f ( n ) ( x ) ⋅ y n = { 1 0 if n = 1 if n ≥ 2
For n = 1 ,
x → ∞ lim f ( 1 ) ( x ) ⋅ y 1 = x → ∞ lim e e e x e e x e x ⋅ ( e e e x ) − 1 ( e e x ) − 1 ( e x ) − 1 = x → ∞ lim 1 = 1
For n ≥ 2 ,
\begin{aligned} \displaystyle & \lim_{x \rightarrow \infty} f^{(n)} (x) \cdot y^n \\ &= \displaystyle \lim_{x \rightarrow \infty} \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n }} c_{nij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \cdot (e^{e^{e^x}})^{-n} (e^{e^x})^{-n} (e^x)^{-n} \\ &= \displaystyle \lim_{x \rightarrow \infty} \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n }} c_{nij} (e^{e^{e^x}})^{-(n-1)} (e^{e^x})^{-(n-i)} (e^x)^{-(n-j)} \\ &= 0 \end{aligned}
Step 4:
The value of the limit is
x → ∞ lim [ f ( x + e − ( a + x + e x + e e x ) ) − f ( x ) ] = x → ∞ lim [ f ( x + e − a e − x e − e x e − e e x ) − f ( x ) ] = x → ∞ lim [ f ( x + e − a ( e x ) − 1 ( e e x ) − 1 ( e e e x ) − 1 ) − f ( x ) ] = x → ∞ lim [ f ( x + e − a y ) − f ( x ) ] = x → ∞ lim [ f ( x ) + f ′ ( x ) ( e − a y ) + n = 2 ∑ ∞ [ n ! f ( n ) ( x ) ( e − a y ) n ] − f ( x ) ] = x → ∞ lim [ f ′ ( x ) ( e − a y ) ] + x → ∞ lim n = 2 ∑ ∞ [ n ! f ( n ) ( x ) ( e − a y ) n ] = e − a x → ∞ lim [ f ′ ( x ) ⋅ y ] + x → ∞ lim n = 2 ∑ ∞ [ n ! e − n a f ( n ) ( x ) ⋅ y n ] = e − a + n = 2 ∑ ∞ [ n ! e − n a x → ∞ lim ( f ( n ) ( x ) ⋅ y n ) ] = e − a + n = 2 ∑ ∞ [ n ! e − n a ⋅ 0 ] = e − a + n = 2 ∑ ∞ 0 = e − a + 0 = e − a