Don't mess up with the e`s!

Calculus Level 5

Find the value of the following limit:

lim x e e e x + e ( a + x + e x + e e x ) e e e x . \Large \lim_{x\to\infty} e^{e^{e^{x + e^{ -(a + x + e^{x} + e^{e^{x}})}}}} - e^{e^{e^{x}}}.

e a -e^a 0 0 e a e^{-a} 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samuel Lo
Oct 1, 2018

Step 1:

Let f ( x ) = e e e x f(x) = e^{e^{e^x}}

f ( x ) = e e e x e e x e x f^{\prime} (x) = e^{e^{e^x}} e^{e^x} e^x\\

Step 2: Prove that the n t h n^{th} derivative of f f has the following form, for n 1 n \geq 1

f ( n ) ( x ) = \substack 1 i n 1 j n c n i j e e e x ( e e x ) i ( e x ) j f^{(n)} (x) = \displaystyle \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n }} c_{nij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j

Prove by mathematical induction:

For n = 1 n=1 ,

c 111 = 1 c_{111} = 1

Assume the statement is true for n = k n=k ,

f ( k ) ( x ) = \substack 1 i k 1 j k c k i j e e e x ( e e x ) i ( e x ) j f^{(k)} (x) = \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j

For n = k + 1 n=k+1 ,

\begin{aligned} f^{(k+1)} (x) &= \frac{d}{dx} f^{(k)} (x) \\ &= \frac{d}{dx} \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} \Big[ \frac{d}{dx} (e^{e^{e^x}}) \Big] (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} \Big[ \frac{d}{dx} ( (e^{e^x})^i) \Big] (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i \Big[ \frac{d}{dx} ( (e^x)^j ) \Big] \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} \Big[ e^{e^{e^x}} e^{e^x} e^x \Big] (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} \Big[ i (e^{e^x})^i e^x\Big] (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^i \Big[ j (e^x)^j \Big] \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} c_{kij} e^{e^{e^x}} (e^{e^x})^{i+1} (e^x)^{j+1} + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} i c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^{j+1} + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} j c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{2 \leq i \leq k+1 \\ 2 \leq j \leq k+1 }} c_{k,i-1,j-1} e^{e^{e^x}} (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 2 \leq j \leq k+1 }} i c_{ki,j-1} e^{e^{e^x}} (e^{e^x})^i (e^x)^j + \displaystyle \sum_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k }} j c_{kij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ &= \displaystyle \sum_{\substack{1 \leq i \leq k+1 \\ 1 \leq j \leq k+1 }} c_{k+1,ij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \\ \end{aligned}

The coefficients c k + 1 , i j c_{k+1,ij} are

c k + 1 , i j = 0 for i = k + 1 and j = 1 c k + 1 , i j = i c k i , j 1 for i = 1 and j = k + 1 c k + 1 , i j = j c k i j for 1 i k and j = 1 c k + 1 , i j = c k , i 1 , j 1 for i = k + 1 and 2 j k + 1 c k + 1 , i j = i c k i , j 1 + j c k i j for i = 1 and 2 j k c k + 1 , i j = c k , i 1 , j 1 + i c k i , j 1 for 2 i k and j = k + 1 c k + 1 , i j = c k , i 1 , j 1 + i c k i , j 1 + j c k i j for 2 i k and 2 j k \begin{array}{lclcl} c_{k+1,ij} = 0 & \text{for} & i = k+1 & \text{and} & j = 1 \\ c_{k+1,ij} = i c_{ki,j-1} & \text{for} & i = 1 & \text{and} & j = k+1 \\ c_{k+1,ij} = j c_{kij} & \text{for} &1 \leq i \leq k & \text{and} & j = 1 \\ c_{k+1,ij} = c_{k,i-1,j-1}& \text{for} & i = k+1 & \text{and} & 2 \leq j \leq k+1 \\ c_{k+1,ij} = i c_{ki,j-1} + j c_{kij} & \text{for} & i = 1 & \text{and} & 2 \leq j \leq k \\ c_{k+1,ij} = c_{k,i-1,j-1} + i c_{ki,j-1} & \text{for} & 2 \leq i \leq k & \text{and} & j = k+1 \\ c_{k+1,ij} = c_{k,i-1,j-1} + i c_{ki,j-1} + j c_{kij} & \text{for} & 2 \leq i \leq k & \text{and} & 2 \leq j \leq k \\ \end{array}

Step 3:

Let y = ( e e e x ) 1 ( e e x ) 1 ( e x ) 1 y = (e^{e^{e^x}})^{-1} (e^{e^x})^{-1} (e^x)^{-1}

Prove that lim x f ( n ) ( x ) y n = { 1 if n = 1 0 if n 2 \displaystyle \lim_{x \rightarrow \infty} f^{(n)} (x) \cdot y^n =\left\{ \begin{array}{rl} 1 & \text{if }n=1 \\ 0 & \text{if }n \geq 2 \end{array} \right.

For n = 1 n = 1 ,

lim x f ( 1 ) ( x ) y 1 = lim x e e e x e e x e x ( e e e x ) 1 ( e e x ) 1 ( e x ) 1 = lim x 1 = 1 \begin{aligned} \displaystyle & \lim_{x \rightarrow \infty} f^{(1)} (x) \cdot y^1 \\ &= \displaystyle \lim_{x \rightarrow \infty} e^{e^{e^x}} e^{e^x} e^x \cdot (e^{e^{e^x}})^{-1} (e^{e^x})^{-1} (e^x)^{-1} \\ &= \displaystyle \lim_{x \rightarrow \infty} 1 \\ &= 1 \end{aligned}

For n 2 n \geq 2 ,

\begin{aligned} \displaystyle & \lim_{x \rightarrow \infty} f^{(n)} (x) \cdot y^n \\ &= \displaystyle \lim_{x \rightarrow \infty} \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n }} c_{nij} e^{e^{e^x}} (e^{e^x})^i (e^x)^j \cdot (e^{e^{e^x}})^{-n} (e^{e^x})^{-n} (e^x)^{-n} \\ &= \displaystyle \lim_{x \rightarrow \infty} \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n }} c_{nij} (e^{e^{e^x}})^{-(n-1)} (e^{e^x})^{-(n-i)} (e^x)^{-(n-j)} \\ &= 0 \end{aligned}

Step 4:

The value of the limit is

lim x [ f ( x + e ( a + x + e x + e e x ) ) f ( x ) ] = lim x [ f ( x + e a e x e e x e e e x ) f ( x ) ] = lim x [ f ( x + e a ( e x ) 1 ( e e x ) 1 ( e e e x ) 1 ) f ( x ) ] = lim x [ f ( x + e a y ) f ( x ) ] = lim x [ f ( x ) + f ( x ) ( e a y ) + n = 2 [ f ( n ) ( x ) n ! ( e a y ) n ] f ( x ) ] = lim x [ f ( x ) ( e a y ) ] + lim x n = 2 [ f ( n ) ( x ) n ! ( e a y ) n ] = e a lim x [ f ( x ) y ] + lim x n = 2 [ e n a n ! f ( n ) ( x ) y n ] = e a + n = 2 [ e n a n ! lim x ( f ( n ) ( x ) y n ) ] = e a + n = 2 [ e n a n ! 0 ] = e a + n = 2 0 = e a + 0 = e a \begin{aligned} \displaystyle & \lim_{x \rightarrow \infty} \Big[ f \Big(x + e^{-(a + x + e^x + e^{e^x} )} \Big) - f(x) \Big] \\ &= \displaystyle \lim_{x \rightarrow \infty} \Big[ f \Big( x + e^{-a} e^{-x} e^{-e^x} e^{-e^{e^x}} \Big) - f(x) \Big] \\ &= \displaystyle \lim_{x \rightarrow \infty} \Big[ f \Big( x + e^{-a} (e^x)^{-1} (e^{e^x})^{-1} (e^{e^{e^x}})^{-1} \Big) - f(x) \Big] \\ &= \displaystyle \lim_{x \rightarrow \infty} \Big[ f ( x + e^{-a} y ) - f(x) \Big] \\ &= \displaystyle \lim_{x \rightarrow \infty} \Big[ f(x) + f^{\prime}(x) (e^{-a} y) + \sum_{n=2}^{\infty}\Big[ \frac{f^{(n)}(x)}{n!} (e^{-a} y)^n \Big] - f(x) \Big] \\ &= \displaystyle \lim_{x \rightarrow \infty} \Big[ f^{\prime}(x) (e^{-a} y) \Big] + \displaystyle \lim_{x \rightarrow \infty} \sum_{n=2}^{\infty}\Big[ \frac{f^{(n)}(x)}{n!} (e^{-a} y)^n \Big] \\ &= e^{-a} \displaystyle \lim_{x \rightarrow \infty} \Big[ f^{\prime}(x) \cdot y \Big] + \displaystyle \lim_{x \rightarrow \infty} \sum_{n=2}^{\infty}\Big[ \frac{e^{-na}}{n!} f^{(n)}(x) \cdot y^n \Big] \\ &= e^{-a} + \displaystyle \sum_{n=2}^{\infty}\Big[ \frac{e^{-na}}{n!} \lim_{x \rightarrow \infty} \big( f^{(n)}(x) \cdot y^n \big) \Big] \\ &= e^{-a} + \displaystyle \sum_{n=2}^{\infty}\Big[ \frac{e^{-na}}{n!} \cdot 0 \Big] \\ &= e^{-a} + \displaystyle \sum_{n=2}^{\infty}0 \\ &= e^{-a} + 0 \\ &= e^{-a} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...