Don't Multiply It Out!

Find the remainder when 3 2015 + 7 2015 3^{2015} + 7^{2015} is divided by 50.

This problem is part of the set AMSP .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Apr 27, 2015

3 2015 + 7 2015 ( 3 5 ) 403 ( m o d 50 ) + 7 ( 7 2 ) 1007 ( m o d 50 ) [ ( 243 ) 403 + 7 ( 49 ) 1007 ] ( m o d 50 ) [ ( 7 ) 403 + 7 ( 50 1 ) 1007 ] ( m o d 50 ) [ 7 ( 49 ) 201 + 7 ( 1 ) ] ( m o d 50 ) [ 7 ( 1 ) + 7 ( 1 ) ] ( m o d 50 ) 0 ( m o d 50 ) \begin{aligned} 3^{2015} + 7^{2015} & \equiv (3^5)^{403} \pmod {50}+ 7(7^2)^{1007} \pmod {50} \\ & \equiv \left[ (243)^{403} + 7(49)^{1007} \right] \pmod {50} \\ & \equiv \left[ (-7)^{403} + 7(50-1)^{1007} \right] \pmod {50} \\ & \equiv \left[ -7(49)^{201} + 7(-1) \right] \pmod {50} \\ & \equiv \left[ -7(-1) + 7(-1) \right] \pmod {50} \\ & \equiv \boxed{0} \pmod{50} \end{aligned}

Moderator note:

I was thinking of Chinese Remainder Theorem. But this gets the job done fairly quick as well. Nice!

mod 25 : 25\!:\ \ 3 2015 ( m o d 20 ) + 7 2015 ( m o d 20 ) 3^{2015\!\pmod{\!20}}+7^{2015\!\pmod{\!20}} by Euler's theorem.

3 5 + 7 5 1 81 6 3 + 1 4 9 2 ( 1 ) 2 7 1 18 + 1 7 1 7 + 1 7 0 \equiv 3^{-5}+7^{-5}\equiv \frac{1}{\underbrace{81}_{6}\cdot 3}+\frac{1}{\underbrace{49^2}_{(-1)^2}\cdot 7}\equiv \frac{1}{18}+\frac{1}{7}\equiv \frac{1}{-7}+\frac{1}{7}\equiv 0 and clearly is even, so divisible by 50 50 too.

mathh mathh - 6 years ago
Ramesh Goenka
Apr 25, 2015

Austin Seiberlich
Apr 30, 2015

3 2015 + 7 2015 [ ( 3 5 ) 403 + ( 7 5 ) 403 ] ( m o d 50 ) 3^{2015} + 7^{2015} \, \, \equiv [(3^{5})^{403} + (7^{5})^{403}] \pmod{50} [ 24 3 403 + 1680 7 403 ( m o d 50 ) \qquad \qquad \qquad \equiv [243^{403} + 16807^{403} \pmod{50} [ ( 7 ) 403 + ( 7 ) 403 ] ( m o d 50 ) \qquad \qquad \qquad \equiv [(-7)^{403} + (7)^{403}] \pmod{50} 0 ( m o d 50 ) \qquad \qquad \qquad \equiv \boxed{0} \pmod{50}

Shubham Poddar
Apr 27, 2015

The last digit of 3^2015 will be 7.

The last digit of 7^2015 will be 3.

Hence the last digit of the sum will be 0.

Hence it will be completely divisible by 50.

Moderator note:

As Aalap Shah has pointed out, you did not prove that it can further be divisible by 5.

No, this only ensures divisibility by 10, not 50.

Aalap Shah - 6 years, 1 month ago
William Isoroku
Apr 27, 2015

Perfect website: https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...