Don't need hardwork

Algebra Level 4

Let a < b < c a<b<c be the three real roots of the equation 3 x 3 35 x 2 + 500 = 0 3x^3-35x^2+500=0 .

Find 50 0 2 ( b c ) 2 + 50 0 2 ( a c ) 2 + 50 0 2 ( a b ) 2 \dfrac{500^2}{(bc)^2}+\dfrac{500^2}{(ac)^2}+\dfrac{500^2}{(ab)^2} .


The answer is 1225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ravi Dwivedi
Aug 28, 2015

E = 50 0 2 ( b c ) 2 + 50 0 2 ( a c ) 2 + 50 0 2 ( a b ) 2 E= \dfrac{500^2}{(bc)^2}+\dfrac{500^2}{(ac)^2}+\dfrac{500^2}{(ab)^2} .

E = ( 500 ) 2 ( a 2 ( a b c ) 2 + b 2 ( a b c ) 2 + c 2 ( a b c ) 2 ) \implies E=(500)^2(\dfrac{a^2}{(abc)^2}+\dfrac{b^2}{(abc)^2}+\dfrac{c^2}{(abc)^2}) .

Using a b c = 500 3 abc=\frac{500}{3} we get

E = ( 500 ) 2 ( 9 a 2 ( 500 ) 2 + 9 b 2 ( 500 ) ) 2 + 9 c 2 ( 500 ) 2 ) E=(500)^2(\dfrac{9 a^2}{(500)^2}+\dfrac{9 b^2}{(500))^2}+\dfrac{9 c^2}{(500)^2}) .

E = 9 ( a 2 + b 2 + c 2 ) E=9(a^2+b^2+c^2)

E = 9 ( ( a + b + c ) 2 2 ( a b + b c + c a ) ) E=9((a+b+c)^2-2(ab+bc+ca))

Using a + b + c = 35 3 a+b+c=\dfrac{35}{3} and a b + b c + c a = 0 ab+bc+ca=0 we get

E = 9 ( ( 35 3 ) 2 2 × 0 ) = ( 35 ) 2 = 1225 E=9((\dfrac{35}{3})^2 - 2 \times 0)= (35)^2 = \boxed{1225}

Moderator note:

Simple standard approach using Vieta's formulas.

NICE!!!!!!

Pi Han Goh - 5 years, 9 months ago

i did same..

Dev Sharma - 5 years, 9 months ago
Department 8
Aug 28, 2015

Using Vieta's Formula we have:- a + b + c = 35 3 a b + b c + c a = 0 a b c = 500 3 a+b+c=\frac{35}{3} \\ ab+bc+ca=0 \\ abc=\frac{-500}{3}

50 0 2 ( b c ) 2 = ( 500 500 3 a ) 2 \frac{500^{2}}{(bc)^{2}} = (\frac{500}{\frac{-500}{3a}})^{2}

Similarly we will get a equation at last which is equal to:-

9 ( a 2 + b 2 + c 2 ) 9 [ ( a + b + c ) 2 2 ( a b + b c + c a ) ] = 9 ( 35 3 ) 2 = 1225 9(a^{2}+b^{2}+c^{2}) \\ 9[(a+b+c)^{2}-2(ab+bc+ca)] \\ =9(\frac{35}{3})^{2} \\ =\boxed{1225}

Another way is to determine the roots. As we solve the equation we get x=-10/3, 10, and 5 Just plug in those values

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...