Don't run out of patience

Algebra Level 5

r = 1 n 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) = 1 a 1 b ( n + 1 ) + 1 c ( n + 2 ) 1 d ( n + 3 ) \sum _{r=1} ^n \frac{1}{r(r+1)(r+2)(r+3)} = \dfrac{1}{a} - \dfrac{1}{b(n+1)}+ \dfrac{1}{c(n+2)}- \dfrac{1}{d(n+3)}

If the equation above holds true for constants a a , b b , c c and d d , find a + b + c + d a+b+c+d .


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Telescoping Series - Sum

A = 1 1.2.3.4 + 1 2.3.4.5 + 1 3.4.5.6 + + 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) \large \mathfrak{A} = \frac{1}{1.2.3.4} +\frac{1}{2.3.4.5} + \frac{1}{3.4.5.6} + \cdots + \frac{1}{n(n+1)(n+2)(n+3)}

3 A = 3 1.2.3.4 + 3 2.3.4.5 + 3 3.4.5.6 + + 3 n ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{3}{1.2.3.4} +\frac{3}{2.3.4.5} + \frac{3}{3.4.5.6} + \cdots + \frac{3}{n(n+1)(n+2)(n+3)}

3 A = 4 1 1.2.3.4 + 5 2 2.3.4.5 + 6 3 3.4.5.6 + + ( n + 3 ) n n ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{4-1}{1.2.3.4} +\frac{5-2}{2.3.4.5} + \frac{6-3}{3.4.5.6} + \cdots + \frac{(n+3) - n}{n(n+1)(n+2)(n+3)}

We observe a \large \text{We observe a } Telescoping Series

3 A = 4 1.2.3. 4 1 1.2.3.4 + 5 2.3.4 5 2 2 . 3.4.5 + 6 3.4.5. 6 3 3 . 4.5.6 + + ( n + 3 ) n ( n + 1 ) ( n + 2 ) ( n + 3 ) n n ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{\color{#D61F06}{\cancel{4}}}{1.2.3.\color{#D61F06}{\cancel{4}}} - \frac{1}{1.2.3.4} + \frac{\color{#D61F06}{\cancel{5}}}{2.3.4\color{#D61F06}{\cancel{5}}} - \frac{\color{#D61F06}{\cancel{2}}}{\color{#D61F06}{\cancel{2}}.3.4.5} + \frac{\color{#D61F06}{\cancel{6}}}{3.4.5.\color{#D61F06}{\cancel{6}}} - \frac{\color{#D61F06}{\cancel{3}}}{\color{#D61F06}{\cancel{3}}.4.5.6} + \cdots + \frac{\cancel{(n+3)}}{n(n+1)(n+2)\cancel{(n+3)}} - \frac{\cancel{n}}{\cancel{n}(n+1)(n+2)(n+3)}

3 A = 1 1.2.3 1 1.2.3.4 + 1 1.2.3.4 1 3.4.5 + 1 3.4.5 1 4.5.6 + + 1 n ( n + 1 ) ( n + 2 ) 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{1.2.3.4} + \frac{1}{1.2.3.4} -\frac{1}{3.4.5} + \frac{1}{3.4.5} - \frac{1}{4.5.6} + \cdots + \frac{1}{n(n+1)(n+2)} - \frac{1}{(n+1)(n+2)(n+3)}

3 A = 1 1.2.3 1 1.2.3.4 + 1 1.2.3.4 1 3.4.5 + 1 3.4.5 1 4.5.6 + 1 4.5.6 1 n ( n + 1 ) ( n + 2 ) + 1 n ( n + 1 ) ( n + 2 ) 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \underbrace{\cancel{\frac{1}{1.2.3.4}} + \cancel{\frac{1}{1.2.3.4}}} -\underbrace{\cancel{\frac{1}{3.4.5}} + \cancel{\frac{1}{3.4.5}}} - \underbrace{\cancel{\frac{1}{4.5.6}} + \cancel{\frac{1}{4.5.6}}} \cdots - \underbrace{\cancel{\frac{1}{n(n+1)(n+2)}} + \cancel{\frac{1}{n(n+1)(n+2)}}} - \frac{1}{(n+1)(n+2)(n+3)}

All the terms as braced cancel out and yield the following : \text{All the terms as braced cancel out and yield the following : }

3 A = 1 1.2.3 1 2 2 ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \color{#3D99F6}{\frac{1}{2}}\frac{\color{#3D99F6}2}{(n+1)(n+2)(n+3)}

3 A = 1 1.2.3 1 2 ( n + 3 ) ( n + 1 ) ( n + 1 ) ( n + 2 ) ( n + 3 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{2}\frac{(n+3)-(n+1)}{(n+1)(n+2)(n+3)}

3 A = 1 1.2.3 1 2 ( 1 ( n + 1 ) ( n + 2 ) 1 ( n + 3 ) ( n + 2 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{2}(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+3)(n+2)}

3 A = 1 1.2.3 1 2 ( ( n + 2 ) ( n + 1 ) ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 2 ) ( n + 3 ) ( n + 2 ) ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{2}(\frac{\color{#3D99F6}{(n+2)-(n+1)}}{(n+1)(n+2)} - \frac{\color{#3D99F6}{(n+3)-(n+2)}}{(n+3)(n+2)})

3 A = 1 1.2.3 1 2 ( 1 ( n + 1 ) 1 ( n + 2 ) 1 ( n + 2 ) + 1 ( n + 3 ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{2}(\frac{1}{(n+1)} - \frac{1}{(n+2)} - \frac{1}{(n+2)} + \frac{1}{(n+3)}

3 A = 1 1.2.3 ( 1 2 ( n + 1 ) 1 2 ( n + 2 ) 1 2 ( n + 2 ) + 1 2 ( n + 3 ) ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - (\frac{1}{2(n+1)} - \frac{1}{2(n+2)} - \frac{1}{2(n+2)} + \frac{1}{2(n+3)})

3 A = 1 1.2.3 1 2 ( n + 1 ) + 1 ( n + 2 ) 1 2 ( n + 3 ) ) \large 3\mathfrak{A} = \frac{1}{1.2.3} - \frac{1}{2(n+1)} + \frac{1}{(n+2)} - \frac{1}{2(n+3)})

A = 1 18 1 6 ( n + 1 ) + 1 3 ( n + 2 ) 1 6 ( n + 3 ) \huge \boxed{\mathfrak{A}} = \frac{1}{18} - \frac{1}{6(n+1)} + \frac{1}{3(n+2)} - \frac{1}{6(n+3)}

a = 18 , b = 6 , c = 3 , d = 6 a + b + c + d 1 = 32 \implies \boxed {a=18,b=6,c=3,d=6}\implies \boxed{a+b+c+d-1=32}

Moderator note:

In the latter half, you can directly apply partial fractions decomposition to 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) \frac{ 1}{ (n+1)(n+2)(n+3) } .

Very elaborate solution. I think there in an error in the second line when you multiply 3 to the whole equation.

Shanthanu Rai - 5 years, 2 months ago

Log in to reply

Yeah the typo is fixed now :)

Aditya Narayan Sharma - 5 years, 2 months ago

Oh yes ! I would keep it in mind .

Aditya Narayan Sharma - 5 years, 2 months ago

S = r = 1 n 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) By partial fraction decomposition = r = 1 n ( 1 6 r 1 2 ( r + 1 ) + 1 2 ( r + 2 ) 1 6 ( r + 3 ) ) = 1 6 r = 1 n ( 1 r 1 r + 3 ) 1 2 r = 1 n ( 1 r + 1 1 r + 2 ) = 1 6 ( r = 1 n 1 r r = 4 n + 3 1 r ) 1 2 ( r = 2 n + 1 1 r r = 3 n + 2 1 r ) = 1 6 ( 1 + 1 2 + 1 3 1 n + 1 1 n + 2 1 n + 3 ) 1 2 ( 1 2 1 n + 2 ) = 1 18 1 6 ( n + 1 ) + 1 3 ( n + 2 ) 1 6 ( n + 3 ) \begin{aligned} S & = \sum_{r=1}^n \frac 1{r(r+1)(r+2)(r+3)} & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \sum_{r=1}^n \left(\frac 1{6r} - \frac 1{2(r+1)} + \frac 1{2(r+2)} - \frac 1{6(r+3)} \right) \\ & = \frac 16 \sum_{r=1}^n \left(\frac 1r - \frac 1{r+3} \right) - \frac 12 \sum_{r=1}^n \left( \frac 1{r+1} - \frac 1{r+2} \right) \\ & = \frac 16 \left(\sum_{r=1}^n \frac 1r - \sum_{r=4}^{n+3} \frac 1r \right) - \frac 12 \left(\sum_{r=2}^{n+1} \frac 1r - \sum_{r=3}^{n+2} \frac 1r \right) \\ & = \frac 16 \left(1+\frac 12 + \frac 13 - \frac 1{n+1} - \frac 1{n+2} - \frac 1{n+3}\right) - \frac 12 \left(\frac 12 - \frac 1{n+2}\right) \\ & = \frac 1{18} - \frac 1{6(n+1)} + \frac 1{3(n+2)} - \frac 1{6(n+3)} \end{aligned}

Therefore, a + b + c + d = 18 + 6 + 3 + 6 = 33 a+b+c+d = 18+6+3+6 = \boxed{33} .

Hassan Abdulla
May 4, 2018

let I = r = 1 n 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) = 1 6 r = 1 n 1 r 3 r + 1 + 3 r + 2 1 r + 3 I = 1 6 r = 1 n 0 1 ( x r 1 3 x r + 3 x r + 1 x r + 2 ) d x = 1 6 r = 0 n 1 0 1 ( x r 3 x r + 1 + 3 x r + 2 x r + 3 ) d x I = 1 6 r = 0 n 1 0 1 x r ( 1 3 x 1 + 3 x 2 x 3 ) d x = 1 6 r = 0 n 1 0 1 x r ( x 1 ) 3 d x I = 1 6 0 1 [ ( x 1 ) 3 r = 0 n 1 x r ] d x = 1 6 0 1 [ ( x 1 ) 3 x n 1 x 1 ] d x = 1 6 0 1 [ ( x 1 ) 2 ( x n 1 ) ] d x I = 1 6 0 1 [ x n + 2 2 x n + 1 + x n ( x 1 ) 2 ] d x = 1 6 [ 1 n + 3 2 n + 2 + 1 n + 1 1 3 ] I = 1 18 1 6 ( n + 1 ) + 1 3 ( n + 2 ) 1 6 ( n + 3 ) \large {\text{let } I=\sum _{ r=1 }^{ n }{ \frac { 1 }{ r\left( r+1 \right) \left( r+2 \right) \left( r+3 \right) } } =\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \frac { 1 }{ r } -\frac { 3 }{ r+1 } +\frac { 3 }{ r+2 } -\frac { 1 }{ r+3 } } \\ \large I=\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \int _{ 0 }^{ 1 }{ \left( { x }^{ r-1 }-3{ x }^{ r }+3{ x }^{ r+1 }-{ x }^{ r+2 } \right) dx } } =\frac { 1 }{ 6 } \sum _{ r=0 }^{ n-1 }{ \int _{ 0 }^{ 1 }{ \left( { x }^{ r }-3{ x }^{ r+1 }+3{ x }^{ r+2 }-{ x }^{ r+3 } \right) dx } } \\ I=\frac { 1 }{ 6 } \sum _{ r=0 }^{ n-1 }{ \int _{ 0 }^{ 1 }{ { x }^{ r }\left( 1-3{ x }^{ 1 }+3{ x }^{ 2 }-{ x }^{ 3 } \right) dx } } =\frac { -1 }{ 6 } \sum _{ r=0 }^{ n-1 }{ \int _{ 0 }^{ 1 }{ { x }^{ r }{ \left( x-1 \right) }^{ 3 }dx } } \\ I=\frac { -1 }{ 6 } \int _{ 0 }^{ 1 }{ \left[ { \left( x-1 \right) }^{ 3 }\sum _{ r=0 }^{ n-1 }{ { x }^{ r } } \right] dx } =\frac { -1 }{ 6 } \int _{ 0 }^{ 1 }{ \left[ { \left( x-1 \right) }^{ 3 }\frac { { x }^{ n }-1 }{ x-1 } \right] dx } =\frac { -1 }{ 6 } \int _{ 0 }^{ 1 }{ \left[ { \left( x-1 \right) }^{ 2 }\left( { x }^{ n }-1 \right) \right] dx } \\ I=\frac { -1 }{ 6 } \int _{ 0 }^{ 1 }{ \left[ { { x }^{ n+2 }-2{ x }^{ n+1 }+{ x }^{ n }-\left( x-1 \right) }^{ 2 } \right] dx } =\frac { -1 }{ 6 } \left[ \frac { 1 }{ n+3 } -\frac { 2 }{ n+2 } +\frac { 1 }{ n+1 } -\frac { 1 }{ 3 } \right] \\ I=\frac { 1 }{ 18 } -\frac { 1 }{ 6(n+1) } +\frac { 1 }{ 3(n+2) } -\frac { 1 }{ 6(n+3)}}

Nice approach!! +1

Shanthanu Rai - 3 years, 1 month ago

Same approach as mine...exploiting infinite geometric series + integration!

tom engelsman - 3 years, 1 month ago

well now that was pretty out of the box

Divyanshu Vadehra - 3 years ago
Shefali Sharma
Nov 4, 2018

T r T_{r} = 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) \frac{1}{r(r+1)(r+2)(r+3)}
T r + 1 T_{r+1} = \frac{1}{(r+1)(r+2)(r+3)(r+4)} \(T_{r} / T r + 1 T_{r+1} = r + 4 r \frac{r+4}{r}
r T r T_{r} = (r+4) T r + 1 T_{r+1}
r T r T_{r} = (r+1) T r + 1 T_{r+1} + 3 T r + 1 T_{r+1}
putting r = 1,2,3,.........,n-1 and adding them
T 1 T_{1} = 2 T 2 T_{2} + 3 T 2 T_{2}
2 T 2 T_{2} = 3 T 3 T_{3} +3 T 3 T_{3}
3 T 3 T_{3} = 4 T 4 T_{4} + 3 T 4 T_{4}
. .
. .
. .
(n-1) T n 1 T_{n-1} = n T n T_{n} + 3 T n T_{n}






T 1 T_{1} = 3( T 2 T_{2} + T 3 T_{3} + ..............+ T n T_{n} ) + n T n T_{n}
4 T 1 T_{1} = 3( T 1 T_{1} + T 2 T_{2} + T 3 T_{3} +............. T n T_{n} ) + n T n T_{n} 4T1 - n T n T_{n} = 3 S n S_{n}
S n S_{n} =(4 T 1 T_{1} - n T n T_{n} )/3
S n S_{n} = 1/18 - 1/3(n+1)(n+2)(n+3)
S n S_{n} = 1/18 - 1/6(n+1) + 1/3(n+2) - 1/6(n+2)
Thus, a+b+c+d = 33

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...