r = 1 ∑ n r ( r + 1 ) ( r + 2 ) ( r + 3 ) 1 = a 1 − b ( n + 1 ) 1 + c ( n + 2 ) 1 − d ( n + 3 ) 1
If the equation above holds true for constants a , b , c and d , find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In the latter half, you can directly apply partial fractions decomposition to ( n + 1 ) ( n + 2 ) ( n + 3 ) 1 .
Very elaborate solution. I think there in an error in the second line when you multiply 3 to the whole equation.
Oh yes ! I would keep it in mind .
S = r = 1 ∑ n r ( r + 1 ) ( r + 2 ) ( r + 3 ) 1 = r = 1 ∑ n ( 6 r 1 − 2 ( r + 1 ) 1 + 2 ( r + 2 ) 1 − 6 ( r + 3 ) 1 ) = 6 1 r = 1 ∑ n ( r 1 − r + 3 1 ) − 2 1 r = 1 ∑ n ( r + 1 1 − r + 2 1 ) = 6 1 ( r = 1 ∑ n r 1 − r = 4 ∑ n + 3 r 1 ) − 2 1 ( r = 2 ∑ n + 1 r 1 − r = 3 ∑ n + 2 r 1 ) = 6 1 ( 1 + 2 1 + 3 1 − n + 1 1 − n + 2 1 − n + 3 1 ) − 2 1 ( 2 1 − n + 2 1 ) = 1 8 1 − 6 ( n + 1 ) 1 + 3 ( n + 2 ) 1 − 6 ( n + 3 ) 1 By partial fraction decomposition
Therefore, a + b + c + d = 1 8 + 6 + 3 + 6 = 3 3 .
let I = ∑ r = 1 n r ( r + 1 ) ( r + 2 ) ( r + 3 ) 1 = 6 1 ∑ r = 1 n r 1 − r + 1 3 + r + 2 3 − r + 3 1 I = 6 1 ∑ r = 1 n ∫ 0 1 ( x r − 1 − 3 x r + 3 x r + 1 − x r + 2 ) d x = 6 1 ∑ r = 0 n − 1 ∫ 0 1 ( x r − 3 x r + 1 + 3 x r + 2 − x r + 3 ) d x I = 6 1 ∑ r = 0 n − 1 ∫ 0 1 x r ( 1 − 3 x 1 + 3 x 2 − x 3 ) d x = 6 − 1 ∑ r = 0 n − 1 ∫ 0 1 x r ( x − 1 ) 3 d x I = 6 − 1 ∫ 0 1 [ ( x − 1 ) 3 ∑ r = 0 n − 1 x r ] d x = 6 − 1 ∫ 0 1 [ ( x − 1 ) 3 x − 1 x n − 1 ] d x = 6 − 1 ∫ 0 1 [ ( x − 1 ) 2 ( x n − 1 ) ] d x I = 6 − 1 ∫ 0 1 [ x n + 2 − 2 x n + 1 + x n − ( x − 1 ) 2 ] d x = 6 − 1 [ n + 3 1 − n + 2 2 + n + 1 1 − 3 1 ] I = 1 8 1 − 6 ( n + 1 ) 1 + 3 ( n + 2 ) 1 − 6 ( n + 3 ) 1
Nice approach!! +1
Same approach as mine...exploiting infinite geometric series + integration!
well now that was pretty out of the box
T
r
=
r
(
r
+
1
)
(
r
+
2
)
(
r
+
3
)
1
T
r
+
1
=
\frac{1}{(r+1)(r+2)(r+3)(r+4)}
\(T_{r}
/
T
r
+
1
=
r
r
+
4
r
T
r
= (r+4)
T
r
+
1
r
T
r
= (r+1)
T
r
+
1
+ 3
T
r
+
1
putting r = 1,2,3,.........,n-1 and adding them
T
1
= 2
T
2
+ 3
T
2
2
T
2
= 3
T
3
+3
T
3
3
T
3
= 4
T
4
+ 3
T
4
. .
. .
. .
(n-1)
T
n
−
1
= n
T
n
+ 3
T
n
T
1
= 3(
T
2
+
T
3
+ ..............+
T
n
) + n
T
n
4
T
1
= 3(
T
1
+
T
2
+
T
3
+.............
T
n
) + n
T
n
4T1 - n
T
n
= 3
S
n
S
n
=(4
T
1
- n
T
n
)/3
S
n
= 1/18 - 1/3(n+1)(n+2)(n+3)
S
n
= 1/18 - 1/6(n+1) + 1/3(n+2) - 1/6(n+2)
Thus, a+b+c+d = 33
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Telescoping Series - Sum
A = 1 . 2 . 3 . 4 1 + 2 . 3 . 4 . 5 1 + 3 . 4 . 5 . 6 1 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) 1
3 A = 1 . 2 . 3 . 4 3 + 2 . 3 . 4 . 5 3 + 3 . 4 . 5 . 6 3 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) 3
3 A = 1 . 2 . 3 . 4 4 − 1 + 2 . 3 . 4 . 5 5 − 2 + 3 . 4 . 5 . 6 6 − 3 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 3 ) − n
We observe a Telescoping Series
3 A = 1 . 2 . 3 . 4 4 − 1 . 2 . 3 . 4 1 + 2 . 3 . 4 5 5 − 2 . 3 . 4 . 5 2 + 3 . 4 . 5 . 6 6 − 3 . 4 . 5 . 6 3 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 3 ) − n ( n + 1 ) ( n + 2 ) ( n + 3 ) n
3 A = 1 . 2 . 3 1 − 1 . 2 . 3 . 4 1 + 1 . 2 . 3 . 4 1 − 3 . 4 . 5 1 + 3 . 4 . 5 1 − 4 . 5 . 6 1 + ⋯ + n ( n + 1 ) ( n + 2 ) 1 − ( n + 1 ) ( n + 2 ) ( n + 3 ) 1
3 A = 1 . 2 . 3 1 − 1 . 2 . 3 . 4 1 + 1 . 2 . 3 . 4 1 − 3 . 4 . 5 1 + 3 . 4 . 5 1 − 4 . 5 . 6 1 + 4 . 5 . 6 1 ⋯ − n ( n + 1 ) ( n + 2 ) 1 + n ( n + 1 ) ( n + 2 ) 1 − ( n + 1 ) ( n + 2 ) ( n + 3 ) 1
All the terms as braced cancel out and yield the following :
3 A = 1 . 2 . 3 1 − 2 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) 2
3 A = 1 . 2 . 3 1 − 2 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 3 ) − ( n + 1 )
3 A = 1 . 2 . 3 1 − 2 1 ( ( n + 1 ) ( n + 2 ) 1 − ( n + 3 ) ( n + 2 ) 1
3 A = 1 . 2 . 3 1 − 2 1 ( ( n + 1 ) ( n + 2 ) ( n + 2 ) − ( n + 1 ) − ( n + 3 ) ( n + 2 ) ( n + 3 ) − ( n + 2 ) )
3 A = 1 . 2 . 3 1 − 2 1 ( ( n + 1 ) 1 − ( n + 2 ) 1 − ( n + 2 ) 1 + ( n + 3 ) 1
3 A = 1 . 2 . 3 1 − ( 2 ( n + 1 ) 1 − 2 ( n + 2 ) 1 − 2 ( n + 2 ) 1 + 2 ( n + 3 ) 1 )
3 A = 1 . 2 . 3 1 − 2 ( n + 1 ) 1 + ( n + 2 ) 1 − 2 ( n + 3 ) 1 )
A = 1 8 1 − 6 ( n + 1 ) 1 + 3 ( n + 2 ) 1 − 6 ( n + 3 ) 1
⟹ a = 1 8 , b = 6 , c = 3 , d = 6 ⟹ a + b + c + d − 1 = 3 2