Don't try this at home!

A child of mass 4 kg jumps from cart B to cart A and then immediately back to cart B . The mass of each cart is 20 kg and they are initially at rest . In both the cases the child jumps at 6 m s 1 s^{-1} relative to the cart . If the cart moves along the same line with negligible friction with the final velocities of V B V_{B} and V A V_{A} ,respectively. Find the ratio of 6 V B V_{B} and 5 V A V_{A} .

2 9 3 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rahul Badenkal
Jun 27, 2015

c h i l d s v e l o c i t y = 6 m / s ( V e l o c i t y t o w a r d s r i g h t = + v e , t o w a r d s l e f t = v e ) 1. J u m p i n g F r o m B M o m e n t u m B e f o r e j u m p = M o m e n t u m A f t e r J u m p 0 = 4 ( 6 ) + 20 ( v b ) v b = 6 5 m / s 2. L a n d i n g o n A t h e n J u m p i n g f r o m A . M o m e n t u m J u s t B e f o r e l a n d i n g o n A = M o m e n t u m J u s t A f t e r J u m p i n g f r o m A 4 ( 6 ) = 4 ( v ) + 20 ( v a ) b u t g i v e n v v a = 6 ( J u m p s 6 m / s r e l a t i v e t o t h e c a r t ) v = 6 + v a S u b s t i t u t i n g w e g e t v = 4 m / s , v a = 2 m / s 3. L a n d i n g o n B M o m e n t u m B e f o r e l a n d i n g = M o m e n t u m A f t e r l a n d i n g 4 ( 4 ) + 20 ( 6 5 ) = 24 ( v b ) ( T h e y m o v e t o g e t h e r t h e r e f o r e v = v b ) v b = 5 3 m / s 6 v b 5 v a = 6 ( 5 3 ) 5 ( 2 ) = 1 child's\quad velocity=-6m/s\\ (Velocity\quad towards\quad right=+ve,\quad towards\quad left=-ve)\\ \\ 1.\quad Jumping\quad From\quad B\\ Momentum\quad Before\quad jump=Momentum\quad After\quad Jump\\ 0=4(-6)+20({ v }'_{ b })\\ { v }'_{ b }=\frac { 6 }{ 5 } m/s\\ 2.\quad Landing\quad on\quad A\quad then\quad Jumping\quad from\quad A.\\ Momentum\quad Just\quad Before\quad landing\quad on\quad A=\\ Momentum\quad Just\quad After\quad Jumping\quad from\quad A\\ 4(-6)=4(v)+20({ v }_{ a })\\ but\quad given\quad v-{ v }_{ a }=6\quad (Jumps\quad 6m/s\quad relative\quad to\quad the\quad cart)\\ \qquad \qquad \quad \quad v=6+{ v }_{ a }\\ Substituting\quad we\quad get\quad v=4m/s,\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { v }_{ a }=-2m/s\\ 3.\quad Landing\quad on\quad B\\ Momentum\quad Before\quad landing=Momentum\quad After\quad landing\\ 4(4)+20(\frac { 6 }{ 5 } )=24({ v }_{ b })\quad (They\quad move\quad together\quad therefore\quad v={ v }_{ b })\\ { v }_{ b }=\frac { 5 }{ 3 } m/s\\ \frac { 6{ v }_{ b } }{ 5{ v }_{ a } } =\frac { 6(\frac { 5 }{ 3 } ) }{ 5(2) } \quad =1

good i am impressed

Kaustubh Miglani - 5 years, 8 months ago

Excellent solution.

Swapnil Das - 5 years, 4 months ago

Consider the system to be "cart A+cartB+child". Initial momentum p=0. After the jumps, mass of cart B=24kg, mass of cart A=20 kg. Thus, final momentum P=24V B - 20V A. By law of momentum conservation, equating p=P, we have the required ratio=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...