Don't try to find the unknowns...

Algebra Level 5

If θ 1 , θ 2 , θ 3 a n d θ 4 {\theta}_{1},{\theta}_{2},{\theta}_{3} and {\theta}_{4} are four real numbers,then any root of the equation(where z z is a complex number):

s i n θ 1 z 3 + s i n θ 2 z 2 + s i n θ 3 z + s i n θ 4 = 3 sin {\theta}_{1}{z}^{3} + sin {\theta}_{2}{z}^{2} + sin {\theta}_{3}z + sin {\theta}_{4} = 3

lying inside a unit circle z = 1 \left| z \right| = 1 , always satisfies the inequality :

mod(z) > 3/4 mod(z) > 4/3 mod(z)> 5/6 mod(z) > 2/3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arif Ahmed
Nov 13, 2014

If z satisfies the given equation , then z 0 z \neq 0 , because that would imply s i n θ 4 = 3 sin {\theta}_{4} = 3

Using given equation : |3| = | s i n θ 1 z 3 + s i n θ 2 z 2 + s i n θ 3 z + s i n θ 4 sin {\theta}_{1}{z}^{3}+sin {\theta}_{2}{z}^{2}+sin {\theta}_{3}{z}+sin {\theta}_{4} |

Therefore , s i n θ 1 z 3 + s i n θ 2 z 2 + s i n θ 3 z + s i n θ 4 3 |sin {\theta}_{1}||{z}^{3}|+|sin {\theta}_{2}||{z}^{2}|+|sin {\theta}_{3}||z|+|sin {\theta}_{4}| \ge 3

Since s i n x 1 sin x \le 1 ,

3 z 3 + z 2 + z + 1 3 \le |{z}^{3}|+|{z}^{2}|+|z|+1

3 < 1 + z + z 2 + z 3 + z 4 + . . . . . 3 < 1+ |z|+|{z}^{2}|+|{z}^{3}|+|{z}^{4}|+. . . . .

3 < 1 1 z 3 < \frac{1}{1-\left|z\right\|}

Therefore , z > 2 3 \left|z\right| > \frac{2}{3}

Done the same way (y) :)

Anandhu Raj - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...