Don't try to make yourself tired

Algebra Level 3

1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + 6 7 8 9 10 = ? \large \color{#D61F06}{1\cdot 2 \cdot 3 \cdot 4 \cdot 5} + \color{#EC7300}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \color{#20A900}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \cdots + \color{#3D99F6}{6\cdot 7 \cdot 8 \cdot 9 \cdot 10} = \color{#69047E}{\ ?}

Bonus:

Find the general solution for 1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n 1\cdot 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + \cdots + (n-4)(n-3)(n-2)(n-1)n For example, the general solution for 1 + 2 + 3 + . . . + n 1+2+3+...+n is n ( n + 1 ) 2 \dfrac{n(n+1)}{2} .

If you want more questions, please, check out my other questions in Part 2 and Part 3 !


The answer is 55440.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The general expression for n 5 n \ge 5 is

k = 5 n k ! ( k 5 ) ! = 5 ! × k = 5 n k ! 5 ! × ( k 5 ) ! = 5 ! × k = 5 n ( k 5 ) = 5 ! × ( n + 1 6 ) \displaystyle\sum_{k=5}^{n} \dfrac{k!}{(k - 5)!} = 5! \times \sum_{k=5}^{n} \dfrac{k!}{5! \times (k - 5)!} = 5! \times \sum_{k=5}^{n} \dbinom{k}{5} = 5! \times \dbinom{n + 1}{6} ,

where the Hockey Stick Identity was used.

In this case n = 10 n = 10 , which leads to an answer of 5 ! × ( 10 + 1 6 ) = 5 ! × 11 ! 5 ! × 6 ! = 11 ! 6 ! = 55440 5! \times \dbinom{10 + 1}{6} = 5! \times \dfrac{11!}{5! \times 6!|} = \dfrac{11!}{6!} = \boxed{55440} .

Nice solution!

SKYE RZYM - 4 years, 1 month ago

A simple solution -- thanks to @Spandan Senapati

S n = 1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n = k = 1 n 4 k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = k = 1 n 4 ( k + 5 ) ( k 1 ) 6 k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = 1 6 k = 1 n 4 ( k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) ( k + 5 ) ( k 1 ) k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) 6 \begin{aligned} S_n & = 1\cdot 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + \cdots + (n-4)(n-3)(n-2)(n-1)n \\ & = \sum_{k=1}^{n-4} k(k+1)(k+2)(k+3)(k+4) \\ & = \sum_{k=1}^{n-4} \frac {{\color{#3D99F6}(k+5)}-{\color{#D61F06}(k-1)}}6 \cdot k(k+1)(k+2)(k+3)(k+4) \\ & = \frac 16 \sum_{k=1}^{n-4} \big(k(k+1)(k+2)(k+3)(k+4){\color{#3D99F6}(k+5)} - {\color{#D61F06}(k-1)}k(k+1)(k+2)(k+3)(k+4)\big) \\ & = \frac {(n-4)(n-3)(n-2)(n-1)n(n+1)}6 \end{aligned}

For n = 10 n=10 , we have:

S 10 = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) 6 = ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11 ) 6 = 55440 \begin{aligned} S_{10} & = \frac {(n-4)(n-3)(n-2)(n-1)n(n+1)}6 \\ & = \frac {(6)(7)(8)(9)(10)(11)}6 \\ & = \boxed{55440} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...